Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,939 Bytes
5919bed e82496b 5919bed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
import gradio as gr
import json
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from datasets import load_dataset
from plotly.subplots import make_subplots
CATEGORIES = ["task-solving", "math-reasoning", "general-instruction", "natural-question", "safety"]
LANGS = ['en', 'vi', 'th', 'id', 'km', 'lo', 'ms', 'my', 'tl']
FORCE_DOWNLOAD = bool(int(os.environ.get("FORCE_DOWNLOAD", "0")))
HF_TOKEN = str(os.environ.get("HF_TOKEN", ""))
DATA_SET_REPO_PATH = str(os.environ.get("DATA_SET_REPO_PATH", ""))
PERFORMANCE_FILENAME = str(os.environ.get("PERFORMANCE_FILENAME", "gpt4_single_json.csv"))
rename_map = {
"seallm13b10L6k_a_5a1R1_seaall_sft4x_1_5a1_r2_0_dpo_8_40000s": "SeaLLM-13b",
= "polylm": "PolyLM-13b",
"qwen": "Qwen-14b",
"gpt-3.5-turbo": "GPT-3.5-turbo",
}
CATEGORIES = [ "task-solving", "math-reasoning", "general-instruction", "natural-question", "safety", ]
CATEGORIES_NAMES = {
"task-solving": 'Task-solving',
"math-reasoning": 'Math',
"general-instruction": 'General-instruction',
"natural-question": 'NaturalQA',
"safety": 'Safety',
}
# LANGS = ['en', 'vi', 'th', 'id', 'km', 'lo', 'ms', 'my', 'tl']
LANGS = ['en', 'vi', 'id', 'ms', 'tl', 'th', 'km', 'lo', 'my']
LANG_NAMES = {
'en': 'eng',
'vi': 'vie',
'th': 'tha',
'id': 'ind',
'km': 'khm',
'lo': 'lao',
'ms': 'msa',
'my': 'mya',
'tl': 'tgl',
}
MODEL_DFRAME = None
def get_model_df():
# global MODEL_DFRAME
# if isinstance(MODEL_DFRAME, pd.DataFrame):
# print(f'Load cache data frame')
# return MODEL_DFRAME
from huggingface_hub import hf_hub_download
assert DATA_SET_REPO_PATH != ''
assert HF_TOKEN != ''
repo_id = DATA_SET_REPO_PATH
filename = PERFORMANCE_FILENAME
# data_path = f"{DATA_SET_REPO_PATH}/{PERFORMANCE_FILENAME}"
file_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
force_download=FORCE_DOWNLOAD,
local_dir='./hf_cache',
repo_type="dataset",
token=HF_TOKEN
)
print(f'Downloaded file at {file_path} from {DATA_SET_REPO_PATH} / {PERFORMANCE_FILENAME}')
df = pd.read_csv(file_path)
return df
def aggregate_df(df, model_dict, category_name, categories):
scores_all = []
all_models = df["model"].unique()
for model in all_models:
for i, cat in enumerate(categories):
# filter category/model, and score format error (<1% case)
res = df[(df[category_name]==cat) & (df["model"]==model) & (df["score"] >= 0)]
score = res["score"].mean()
cat_name = cat
scores_all.append({"model": model, category_name: cat_name, "score": score})
target_models = list(model_dict.keys())
scores_target = [scores_all[i] for i in range(len(scores_all)) if scores_all[i]["model"] in target_models]
scores_target = sorted(scores_target, key=lambda x: target_models.index(x["model"]), reverse=True)
df_score = pd.DataFrame(scores_target)
df_score = df_score[df_score["model"].isin(target_models)]
rename_map = model_dict
for k, v in rename_map.items():
df_score.replace(k, v, inplace=True)
return df_score
def polar_subplot(fig, dframe, model_names, category_label, category_names, row, col, showlegend=True):
# cat category
colors = px.colors.qualitative.Plotly
for i, (model, model_name) in enumerate(model_names):
cat_list = dframe[dframe['model'] == model_name][category_label].tolist()
score_list = dframe[dframe['model'] == model_name]['score'].tolist()
cat_list += [cat_list[0]]
cat_list = [category_names[x] for x in cat_list]
score_list += [score_list[0]]
polar = go.Scatterpolar(
name = model_name,
r = score_list,
theta = cat_list,
legendgroup=f'{i}',
marker=dict(color=colors[i]),
hovertemplate="""Score: %{r:.2f}""",
showlegend=showlegend,
)
fig.add_trace(polar, row, col)
def plot_agg_fn():
df = get_model_df()
all_models = df["model"].unique()
model_names = list(rename_map.items())
colors = px.colors.qualitative.Plotly
cat_df = aggregate_df(df, rename_map, "category", CATEGORIES, )
lang_df = aggregate_df(df, rename_map, "lang", LANGS, )
fig = make_subplots(
rows=1, cols=2,
specs=[[{'type': 'polar'}]*2],
subplot_titles=("By Category", "By Language"),
)
fig.layout.annotations[0].y = 1.05
fig.layout.annotations[1].y = 1.05
# cat category
for i, (model, model_name) in enumerate(model_names):
cat_list = cat_df[cat_df['model'] == model_name]['category'].tolist()
score_list = cat_df[cat_df['model'] == model_name]['score'].tolist()
cat_list += [cat_list[0]]
cat_list = [CATEGORIES_NAMES[x] for x in cat_list]
score_list += [score_list[0]]
polar = go.Scatterpolar(
name = model_name,
r = score_list,
theta = cat_list,
legendgroup=f'{i}',
marker=dict(color=colors[i]),
hovertemplate="""Score: %{r:.2f}""",
)
fig.add_trace(polar, 1, 1)
# cat langs
for i, (model, model_name) in enumerate(model_names):
cat_list = lang_df[lang_df['model'] == model_name]['lang'].tolist()
score_list = lang_df[lang_df['model'] == model_name]['score'].tolist()
cat_list += [cat_list[0]]
score_list += [score_list[0]]
cat_list = [LANG_NAMES[x] for x in cat_list]
polar = go.Scatterpolar(
name = model_name,
r = score_list,
theta = cat_list,
legendgroup=f'{i}',
marker=dict(color=colors[i]),
hovertemplate="""Score: %{r:.2f}""",
showlegend=False,
)
fig.add_trace(polar, 1, 2)
polar_config = dict(
angularaxis = dict(
rotation=90, # start position of angular axis
),
radialaxis = dict(
range=[0, 10],
),
)
fig.update_layout(
polar = polar_config,
polar2 = polar_config,
title='Sea-Bench (rated by GPT-4)',
)
return fig
def plot_by_lang_fn():
df = get_model_df()
model_names = list(rename_map.items())
fig = make_subplots(
rows=3, cols=3,
specs=[[{'type': 'polar'}]*3] * 3,
subplot_titles=list(LANG_NAMES.values()),
# vertical_spacing=1
)
# print(fig.layout.annotations)
for ano in fig.layout.annotations:
ano.y = ano.y + 0.02
has_safety = ['vi', 'id', 'th']
for lang_id, lang in enumerate(LANGS):
cat_names = CATEGORIES if lang in has_safety else [x for x in CATEGORIES if x != 'safety']
cat_lang_df = aggregate_df(df[df['lang'] == lang], rename_map, "category", cat_names, )
row = lang_id // 3 + 1
col = lang_id % 3 + 1
polar_subplot(fig, cat_lang_df, model_names, 'category', CATEGORIES_NAMES, row, col, showlegend=lang_id == 0)
polar_config = dict(
angularaxis = dict(
rotation=90, # start position of angular axis
),
radialaxis = dict(
range=[0, 10],
),
)
layer_kwargs = {f"polar{i}": polar_config for i in range(1, 10)}
fig.update_layout(
title='Sea-Bench - By language (rated by GPT-4)',
height=1000,
# width=1200,
**layer_kwargs
)
return fig
def attach_plot_to_demo(demo):
with gr.Accordion("Psst... wanna see some performance benchmarks?", open=False):
gr_plot_agg = gr.Plot(label="Aggregated")
gr_plot_bylang = gr.Plot(label='By language')
# def callback():
demo.load(plot_agg_fn, [], gr_plot_agg)
demo.load(plot_by_lang_fn, [], gr_plot_bylang)
# return callback
|