Spaces:
Running
on
Zero
Running
on
Zero
File size: 43,954 Bytes
d3c19b3 c8aed7a d3c19b3 fa7c6d7 d3c19b3 c8aed7a d3c19b3 c2639e1 d3c19b3 a273e68 d3c19b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 |
import os
from gradio.themes import ThemeClass as Theme
import numpy as np
import argparse
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
import time
from gradio.routes import Request
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.helpers import special_args
import anyio
from typing import AsyncGenerator, Callable, Literal, Union, cast, Generator
from gradio_client.documentation import document, set_documentation_group
from gradio.components import Button, Component
from gradio.events import Dependency, EventListenerMethod
from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
from gradio.components.base import Component
from .base_demo import register_demo, get_demo_class, BaseDemo
from .chat_interface import (
SYSTEM_PROMPT,
MODEL_NAME,
MAX_TOKENS,
TEMPERATURE,
CHAT_EXAMPLES,
format_conversation,
gradio_history_to_openai_conversations,
gradio_history_to_conversation_prompt,
DATETIME_FORMAT,
get_datetime_string,
chat_response_stream_multiturn_engine,
ChatInterfaceDemo,
CustomizedChatInterface,
)
from gradio.events import Events
import inspect
from typing import AsyncGenerator, Callable, Literal, Union, cast
import anyio
from gradio_client import utils as client_utils
from gradio_client.documentation import document
from gradio.blocks import Blocks
from gradio.components import (
Button,
Chatbot,
Component,
Markdown,
State,
Textbox,
get_component_instance,
)
from gradio.events import Dependency, on
from gradio.helpers import create_examples as Examples # noqa: N812
from gradio.helpers import special_args
from gradio.layouts import Accordion, Group, Row
from gradio.routes import Request
from gradio.themes import ThemeClass as Theme
from gradio.utils import SyncToAsyncIterator, async_iteration
from ..globals import MODEL_ENGINE
from ..configs import (
USE_PANEL,
IMAGE_TOKEN,
IMAGE_TOKEN_INTERACTIVE,
CHATBOT_HEIGHT,
CSS,
)
from .multimodal_chat_interface import (
undo_history,
undo_history_until_last_assistant_turn,
vision_chat_response_stream_multiturn_engine,
doc_chat_response_stream_multiturn_engine,
vision_doc_chat_response_stream_multiturn_engine,
gradio_history_to_conversation_prompt,
gradio_history_to_openai_conversations,
gradio_history_to_doc_conversation_prompt,
gradio_history_to_vision_conversation_prompt_paths,
gradio_history_to_vision_doc_conversation_prompt_paths,
)
# .message-fit {
# min-width: 20em;
# width: fit-content !important;
# }
EXAMPLES_PER_PAGE = int(os.environ.get("EXAMPLES_PER_PAGE", 10))
DOC_TEMPLATE = """###
{content}
###
"""
DOC_INSTRUCTION = """Answer the following query exclusively based on the information provided in the document above. \
If the information is not found, please say so instead of making up facts! Remember to answer the question in the same language as the user query!
"""
MultimodalTextbox = None
try:
from gradio import MultimodalTextbox
except ImportError as e:
print(f'Cannot import MultiModalTextbox: {MultimodalTextbox}')
class MultiModalTextChatInterface(CustomizedChatInterface):
def __init__(
self,
fn: Callable,
*,
chatbot: Chatbot | None = None,
textbox: Textbox | None = None,
additional_inputs: str | Component | list[str | Component] | None = None,
additional_inputs_accordion_name: str | None = None,
additional_inputs_accordion: str | Accordion | None = None,
examples: list[str] | None = None,
cache_examples: bool | None = None,
title: str | None = None,
description: str | None = None,
theme: Theme | str | None = None,
css: str | None = None,
js: str | None = None,
head: str | None = None,
analytics_enabled: bool | None = None,
submit_btn: str | None | Button = "Submit",
stop_btn: str | None | Button = "Stop",
retry_btn: str | None | Button = "🔄 Retry",
undo_btn: str | None | Button = "↩️ Undo",
clear_btn: str | None | Button = "🗑️ Clear",
autofocus: bool = True,
concurrency_limit: int | None | Literal["default"] = "default",
fill_height: bool = True,
):
"""
Parameters:
fn: The function to wrap the chat interface around. Should accept two parameters: a string input message and list of two-element lists of the form [[user_message, bot_message], ...] representing the chat history, and return a string response. See the Chatbot documentation for more information on the chat history format.
chatbot: An instance of the gr.Chatbot component to use for the chat interface, if you would like to customize the chatbot properties. If not provided, a default gr.Chatbot component will be created.
textbox: An instance of the gr.Textbox component to use for the chat interface, if you would like to customize the textbox properties. If not provided, a default gr.Textbox component will be created.
additional_inputs: An instance or list of instances of gradio components (or their string shortcuts) to use as additional inputs to the chatbot. If components are not already rendered in a surrounding Blocks, then the components will be displayed under the chatbot, in an accordion.
additional_inputs_accordion_name: Deprecated. Will be removed in a future version of Gradio. Use the `additional_inputs_accordion` parameter instead.
additional_inputs_accordion: If a string is provided, this is the label of the `gr.Accordion` to use to contain additional inputs. A `gr.Accordion` object can be provided as well to configure other properties of the container holding the additional inputs. Defaults to a `gr.Accordion(label="Additional Inputs", open=False)`. This parameter is only used if `additional_inputs` is provided.
examples: Sample inputs for the function; if provided, appear below the chatbot and can be clicked to populate the chatbot input.
cache_examples: If True, caches examples in the server for fast runtime in examples. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
title: a title for the interface; if provided, appears above chatbot in large font. Also used as the tab title when opened in a browser window.
description: a description for the interface; if provided, appears above the chatbot and beneath the title in regular font. Accepts Markdown and HTML content.
theme: Theme to use, loaded from gradio.themes.
css: Custom css as a string or path to a css file. This css will be included in the demo webpage.
js: Custom js or path to js file to run when demo is first loaded. This javascript will be included in the demo webpage.
head: Custom html to insert into the head of the demo webpage. This can be used to add custom meta tags, scripts, stylesheets, etc. to the page.
analytics_enabled: Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable if defined, or default to True.
submit_btn: Text to display on the submit button. If None, no button will be displayed. If a Button object, that button will be used.
stop_btn: Text to display on the stop button, which replaces the submit_btn when the submit_btn or retry_btn is clicked and response is streaming. Clicking on the stop_btn will halt the chatbot response. If set to None, stop button functionality does not appear in the chatbot. If a Button object, that button will be used as the stop button.
retry_btn: Text to display on the retry button. If None, no button will be displayed. If a Button object, that button will be used.
undo_btn: Text to display on the delete last button. If None, no button will be displayed. If a Button object, that button will be used.
clear_btn: Text to display on the clear button. If None, no button will be displayed. If a Button object, that button will be used.
autofocus: If True, autofocuses to the textbox when the page loads.
concurrency_limit: If set, this is the maximum number of chatbot submissions that can be running simultaneously. Can be set to None to mean no limit (any number of chatbot submissions can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `.queue()`, which is 1 by default).
fill_height: If True, the chat interface will expand to the height of window.
"""
try:
super(gr.ChatInterface, self).__init__(
analytics_enabled=analytics_enabled,
mode="chat_interface",
css=css,
title=title or "Gradio",
theme=theme,
js=js,
head=head,
fill_height=fill_height,
)
except Exception as e:
# Handling some old gradio version with out fill_height
super(gr.ChatInterface, self).__init__(
analytics_enabled=analytics_enabled,
mode="chat_interface",
css=css,
title=title or "Gradio",
theme=theme,
js=js,
head=head,
# fill_height=fill_height,
)
self.concurrency_limit = concurrency_limit
self.fn = fn
self.is_async = inspect.iscoroutinefunction(
self.fn
) or inspect.isasyncgenfunction(self.fn)
self.is_generator = inspect.isgeneratorfunction(
self.fn
) or inspect.isasyncgenfunction(self.fn)
self.examples = examples
if self.space_id and cache_examples is None:
self.cache_examples = True
else:
self.cache_examples = cache_examples or False
self.buttons: list[Button | None] = []
if additional_inputs:
if not isinstance(additional_inputs, list):
additional_inputs = [additional_inputs]
self.additional_inputs = [
get_component_instance(i)
for i in additional_inputs # type: ignore
]
else:
self.additional_inputs = []
if additional_inputs_accordion_name is not None:
print(
"The `additional_inputs_accordion_name` parameter is deprecated and will be removed in a future version of Gradio. Use the `additional_inputs_accordion` parameter instead."
)
self.additional_inputs_accordion_params = {
"label": additional_inputs_accordion_name
}
if additional_inputs_accordion is None:
self.additional_inputs_accordion_params = {
"label": "Additional Inputs",
"open": False,
}
elif isinstance(additional_inputs_accordion, str):
self.additional_inputs_accordion_params = {
"label": additional_inputs_accordion
}
elif isinstance(additional_inputs_accordion, Accordion):
self.additional_inputs_accordion_params = (
additional_inputs_accordion.recover_kwargs(
additional_inputs_accordion.get_config()
)
)
else:
raise ValueError(
f"The `additional_inputs_accordion` parameter must be a string or gr.Accordion, not {type(additional_inputs_accordion)}"
)
with self:
if title:
Markdown(
f"<h1 style='text-align: center; margin-bottom: 1rem'>{self.title}</h1>"
)
if description:
Markdown(description)
if chatbot:
self.chatbot = chatbot.render()
else:
self.chatbot = Chatbot(
label="Chatbot", scale=1, height=200 if fill_height else None
)
with Row():
for btn in [retry_btn, undo_btn, clear_btn]:
if btn is not None:
if isinstance(btn, Button):
btn.render()
elif isinstance(btn, str):
btn = Button(btn, variant="secondary", size="sm")
else:
raise ValueError(
f"All the _btn parameters must be a gr.Button, string, or None, not {type(btn)}"
)
self.buttons.append(btn) # type: ignore
# =------
with Row():
if textbox:
# textbox.container = False
# textbox.show_label = False
textbox_ = textbox.render()
# assert isinstance(textbox_, Textbox)
self.textbox = textbox_
else:
self.textbox = Textbox(
container=False,
show_label=False,
label="Message",
placeholder="Type a message...",
scale=7,
autofocus=autofocus,
)
if stop_btn is not None:
if isinstance(stop_btn, Button):
stop_btn.visible = False
stop_btn.render()
elif isinstance(stop_btn, str):
stop_btn = Button(
stop_btn,
variant="stop",
visible=False,
scale=2,
min_width=150,
)
else:
raise ValueError(
f"The stop_btn parameter must be a gr.Button, string, or None, not {type(stop_btn)}"
)
self.buttons.extend([stop_btn]) # type: ignore
self.num_tokens = Textbox(
# container=False,
show_label=False,
label="# Tokens",
placeholder="0 tokens",
scale=1,
interactive=False,
# autofocus=autofocus,
min_width=10
)
self.fake_api_btn = Button("Fake API", visible=False)
self.fake_response_textbox = Textbox(label="Response", visible=False)
(
self.retry_btn,
self.undo_btn,
self.clear_btn,
# self.submit_btn,
self.stop_btn,
) = self.buttons
self.submit_btn = None
if examples:
if self.is_generator:
examples_fn = self._examples_stream_fn
else:
# examples_fn = self._examples_fn
raise NotImplementedError()
def copy_to_mm_textbox(message, image, filename):
save_input = {"text": message, "files": []}
if filename is not None and os.path.exists(filename):
# save_input['files'].append({"path": file})
save_input['files'].append(filename)
if image is not None and os.path.exists(image):
# save_input['files'].append({"path": file})
save_input['files'].append(image)
print(save_input)
return save_input
# self.example_textbox = gr.Textbox(visible=False)
# self.example_file = gr.File(file_count='single', type='filepath', visible=False)
# self.example_image = gr.Image(type='filepath', visible=False)
# self.examples_handler = Examples(
# examples=examples,
# inputs=[self.example_textbox, self.example_image, self.example_file],
# outputs=self.textbox,
# # fn=examples_fn,
# fn=copy_to_mm_textbox,
# run_on_click=True
# )
self.examples_handler = Examples(
examples=examples,
# inputs=[self.textbox] + self.additional_inputs,
inputs=[self.textbox],
# outputs=self.chatbot,
# fn=examples_fn,
examples_per_page=EXAMPLES_PER_PAGE,
cache_examples=False,
)
any_unrendered_inputs = any(
not inp.is_rendered for inp in self.additional_inputs
)
if self.additional_inputs and any_unrendered_inputs:
with Accordion(**self.additional_inputs_accordion_params): # type: ignore
for input_component in self.additional_inputs:
if not input_component.is_rendered:
input_component.render()
# The example caching must happen after the input components have rendered
if cache_examples:
client_utils.synchronize_async(self.examples_handler.cache)
self.saved_input = State()
self.chatbot_state = (
State(self.chatbot.value) if self.chatbot.value else State([])
)
self._setup_events()
self._setup_api()
def _clear_and_save_textbox(self, saved_input: Dict[str, Union[str, list]]) -> Tuple[Dict[str, Union[str, list]], Dict[str, Union[str, list]]]:
return {"text": "", "files": []}, saved_input
def _add_inputs_to_history(self, history: List[List[Union[str, None]]], save_input: Dict[str, Union[str, list]]):
message = save_input['text']
files = save_input['files']
if files is not None and len(files) > 0:
for f in files:
fpath = f['path'] if isinstance(f, dict) else f
history.append([(fpath, ), None])
if message is not None and message.strip() != "":
history.append([message, None])
return history
def _display_input(
self, saved_input: Dict[str, Union[str, list]], history: List[List[Union[str, None]]]
) -> Tuple[List[List[Union[str, None]]], List[List[list[Union[str, None]]]]]:
message = saved_input["text"]
files = saved_input['files']
if files is not None and len(files) > 0:
print(files)
for f in files:
fpath = f['path'] if isinstance(f, dict) else f
history.append([(fpath, ), None])
if message is not None and message.strip() != "":
history.append([message, None])
return history, history
def _delete_prev_fn(
self, history: list[list[str | None]]
) -> tuple[list[list[str | None]], str, list[list[str | None]]]:
try:
message, _ = history.pop()
except IndexError:
message = ""
# saved_input = [message or ""] + [None] * len(self.multimodal_inputs)
saved_input = {"text": message, "files": []}
return history, saved_input, history
def _setup_events(self) -> None:
from gradio.components import State
has_on = False
try:
from gradio.events import Dependency, EventListenerMethod, on
has_on = True
except ImportError as ie:
has_on = False
submit_fn = self._stream_fn if self.is_generator else self._submit_fn
if not self.is_generator:
raise NotImplementedError(f'should use generator')
if has_on:
# new version
submit_triggers = (
# [self.textbox.submit, self.submit_btn.click]
[self.textbox.submit]
if self.submit_btn
else [self.textbox.submit]
)
submit_event = (
on(
submit_triggers,
self._clear_and_save_textbox,
[self.textbox],
[self.textbox] + [self.saved_input],
api_name=False,
queue=False,
)
.then(
self._display_input,
[self.saved_input, self.chatbot_state],
[self.chatbot, self.chatbot_state],
api_name=False,
queue=False,
)
.success(
submit_fn,
[self.chatbot_state] + self.additional_inputs,
[self.chatbot, self.chatbot_state, self.num_tokens],
api_name=False,
)
)
self._setup_stop_events(submit_triggers, submit_event)
else:
raise ValueError(f'Better install new gradio version than 3.44.0')
if self.retry_btn:
retry_event = (
self.retry_btn.click(
self._delete_prev_fn,
[self.chatbot_state],
[self.chatbot, self.saved_input, self.chatbot_state],
api_name=False,
queue=False,
)
.then(
self._display_input,
[self.saved_input, self.chatbot_state],
[self.chatbot, self.chatbot_state],
api_name=False,
queue=False,
)
.success(
submit_fn,
[self.chatbot_state] + self.additional_inputs,
[self.chatbot, self.chatbot_state, self.num_tokens],
api_name=False,
)
)
self._setup_stop_events([self.retry_btn.click], retry_event)
if self.undo_btn:
self.undo_btn.click(
# self._delete_prev_fn,
# [self.chatbot_state],
# [self.chatbot, self.saved_input, self.chatbot_state],
undo_history_until_last_assistant_turn,
[self.chatbot_state],
[self.chatbot, self.chatbot_state],
api_name=False,
queue=False,
)
# .then(
# lambda x: x,
# [self.saved_input],
# [self.textbox],
# api_name=False,
# queue=False,
# )
def _setup_stop_events(
self, event_triggers: list[EventListenerMethod], event_to_cancel: Dependency
) -> None:
from gradio.components import State
event_triggers = event_triggers if isinstance(event_triggers, (list, tuple)) else [event_triggers]
if self.stop_btn and self.is_generator:
if self.submit_btn:
for event_trigger in event_triggers:
event_trigger(
lambda: (
Button(visible=False),
Button(visible=True),
),
None,
[self.submit_btn, self.stop_btn],
api_name=False,
queue=False,
)
event_to_cancel.then(
lambda: (Button(visible=True), Button(visible=False)),
None,
[self.submit_btn, self.stop_btn],
api_name=False,
queue=False,
)
else:
for event_trigger in event_triggers:
event_trigger(
lambda: Button(visible=True),
None,
[self.stop_btn],
api_name=False,
queue=False,
)
event_to_cancel.then(
lambda: Button(visible=False),
None,
[self.stop_btn],
api_name=False,
queue=False,
)
self.stop_btn.click(
None,
None,
None,
cancels=event_to_cancel,
api_name=False,
)
else:
if self.submit_btn:
for event_trigger in event_triggers:
event_trigger(
lambda: Button(interactive=False),
None,
[self.submit_btn],
api_name=False,
queue=False,
)
event_to_cancel.then(
lambda: Button(interactive=True),
None,
[self.submit_btn],
api_name=False,
queue=False,
)
# upon clear, cancel the submit event as well
if self.clear_btn:
if self.submit_btn:
self.clear_btn.click(
lambda: ([], [], None, Button(interactive=True)),
None,
[self.chatbot, self.chatbot_state, self.saved_input, self.submit_btn],
queue=False,
api_name=False,
cancels=event_to_cancel,
)
else:
self.clear_btn.click(
lambda: ([], [], None),
None,
[self.chatbot, self.chatbot_state, self.saved_input],
queue=False,
api_name=False,
cancels=event_to_cancel,
)
async def _stream_fn(
self,
# message: str,
history_with_input,
request: Request,
*args,
) -> AsyncGenerator:
history = history_with_input[:-1]
message = history_with_input[-1][0]
inputs, _, _ = special_args(
self.fn, inputs=[history_with_input, *args], request=request
)
if self.is_async:
generator = self.fn(*inputs)
else:
generator = await anyio.to_thread.run_sync(
self.fn, *inputs, limiter=self.limiter
)
generator = SyncToAsyncIterator(generator, self.limiter)
# ! In case of error, yield the previous history & undo any generation before raising error
try:
first_response_pack = await async_iteration(generator)
if isinstance(first_response_pack, (tuple, list)):
first_response, num_tokens = first_response_pack
else:
first_response, num_tokens = first_response_pack, -1
update = history + [[message, first_response]]
# print(f"===\n{update}")
yield update, update, f"{num_tokens} toks"
except StopIteration:
update = history + [[message, None]]
yield update, update, "NaN toks"
except Exception as e:
yield history, history, "NaN toks"
raise e
try:
async for response_pack in generator:
if isinstance(response_pack, (tuple, list)):
response, num_tokens = response_pack
else:
response, num_tokens = response_pack, "NaN toks"
update = history + [[message, response]]
# print(f"------\n{update}")
yield update, update, f"{num_tokens} toks"
except Exception as e:
yield history, history, "NaN toks"
raise e
async def _examples_stream_fn(
self,
# message: str,
*args,
) -> AsyncGenerator:
raise ValueError(f'invalid')
history = []
# input_len = 1 + len(self.multimodal_inputs)
# input_len = 2
# saved_input = args[:input_len]
# saved_input = args[0]
# message = saved_input['text']
# files = saved_input['files']
message = args[0]
fname = args[1]
saved_input = {
"text": message,
"files": []
}
if fname is not None and os.path.exists(fname):
# saved_input['files'].append({"path": fname})
saved_input['files'].append(fname)
additional_inputs = args[2:]
history = self._add_inputs_to_history(history, saved_input)
inputs, _, _ = special_args(self.fn, inputs=[history, *additional_inputs], request=None)
if self.is_async:
generator = self.fn(*inputs)
else:
generator = await anyio.to_thread.run_sync(
self.fn, *inputs, limiter=self.limiter
)
generator = SyncToAsyncIterator(generator, self.limiter)
# async for response in generator:
# yield [[message, response]]
try:
async for response_pack in generator:
if isinstance(response_pack, (tuple, list)):
response, num_tokens = response_pack
else:
response, num_tokens = response_pack, "NaN toks"
update = history + [[message, response]]
yield update, update, f"{num_tokens} toks"
except Exception as e:
yield history, history, "NaN toks"
raise e
@register_demo
class VisionMMChatInterfaceDemo(ChatInterfaceDemo):
"""
Accept vision image
"""
@property
def tab_name(self):
return "Vision Chat"
@property
def examples(self):
from pathlib import Path
from gradio.data_classes import FileData, GradioModel
# return [
# ["What's strange about this image?", "assets/dog_monalisa.jpeg", None],
# ["Explain why the sky is blue.", None,],
# ]
return [
# [{"text": "Summarize the document", "files": [{
# "path": "assets/attention_short.pdf", "orig_name": "attention_short", "mime_type": "application/pdf",
# "size": Path("assets/attention_short.pdf").stat().st_size
# }
# ]}],
# [{"text": "Summarize the document", "files": ["assets/attention_short.pdf"]}],
# [{"text": "Summarize the document", "files": [
# FileData(
# path="assets/attention_short.pdf",
# mime_type="application/pdf",
# orig_name="attention_short",
# size=Path("assets/attention_short.pdf").stat().st_size,
# url="attention_short.pdf",
# )
# ]}],
# [{"text": "What's strange about this image?", "files": ["assets/dog_monalisa.jpeg"]},],
# [{"text": "Explain why the sky is blue.", "files": []},],
[{"text": "Mô tả chi tiết bức ảnh.", "files": ["assets/imgs/athlete.jpeg", ]} ],
[{"text": "Mô tả chi tiết bức ảnh.", "files": ["assets/imgs/chart_algo.png", ]} ],
[{"text": "Explain the image.", "files": ["assets/imgs/chart_soap_sense_cycle.png", ]} ],
[{"text": "Provide a detailed description of the poster.", "files": ["assets/imgs/covid.jpeg", ]} ],
[{"text": "Where is this place exactly?", "files": ["assets/imgs/danang.jpeg", ]} ],
[{"text": "What's strange about this image?", "files": ["assets/dog_monalisa.jpeg",]} ],
[{"text": "Đây là ở đâu?", "files": ["assets/imgs/great_wall.png", ]} ],
[{"text": "Giới thiệu về nơi này.", "files": ["assets/imgs/hochiminh_city.jpeg", ]} ],
[{"text": "Đây là ở đâu?", "files": ["assets/imgs/hochiminh_mausoleum.jpeg", ]} ],
[{"text": "Suy nghĩ từng bước một để tìm x.", "files": ["assets/imgs/find_x_triangle.jpeg", ]} ],
[{"text": "Provide a detailed description of the poster.", "files": ["assets/imgs/home_injury.jpeg", ]} ],
[{"text": "Đây là hành tinh gì?", "files": ["assets/imgs/jupyter.jpeg", ]} ],
[{"text": "Miêu tả bức ảnh trên.", "files": ["assets/imgs/leaf.png", ]} ],
[{"text": "Đây là đâu?", "files": ["assets/imgs/mbs.png", ]} ],
[{"text": "Introduce this figure.", "files": ["assets/imgs/merlion_2.jpeg", ]} ],
[{"text": "Explain the figure.", "files": ["assets/imgs/photosynthesis.png", ]} ],
[{"text": "List out all the details of the image.", "files": ["assets/imgs/sewing_tools.png", ]} ],
[{"text": "What happened in this photo.", "files": ["assets/imgs/tiananmen_tankman.jpeg", ]} ],
[{"text": "Có gì ngoài 2 con mèo?", "files": ["assets/imgs/two_cats.jpeg", ]} ],
[{"text": "Biển báo nói gì?", "files": ["assets/imgs/cau_oo.jpeg", ]} ],
[{"text": "Đây là món gì và hướng dẫn cách làm.", "files": ["assets/imgs/banhmy.jpeg", ]} ],
[{"text": "Hãy hướng dẫn nấu món này.", "files": ["assets/imgs/cach-nau-pho-bo-nam-dinh.jpeg", ]} ],
[{"text": "Bức tường nói gì?", "files": ["assets/imgs/camdaibay.jpeg", ]} ],
[{"text": "Công thức này là gì", "files": ["assets/imgs/eistein_field_equation.png", ]} ],
[{"text": "What is this formula about?", "files": ["assets/imgs/eistein_field_equation.png", ]} ],
[{"text": "Hãy tìm góc còn lại.", "files": ["assets/imgs/triangle_find_angle.png", ]} ],
[{"text": "Đây là đâu?", "files": ["assets/imgs/seattle_space_needle.jpeg", ]} ],
[{"text": "Describe the image", "files": ["assets/imgs/seal_logo.png", ]} ],
# [{"text": "Explain why the sky is blue.", None,} ],
[{"text": "Hãy giải thích thuyết tương đối rộng.", "files": []},],
[{"text": "Hãy giải thích vấn đề P vs NP.", "files": []},],
[{"text": "Explain general relativity.", "files": []},],
[{"text": 'Vừa gà vừa chó, bó lại cho tròn, 36 con và 100 chân chẵn. Hỏi có bao nhiêu gà và chó?', "files": []},],
[{"text": 'Hôm nay tôi có 5 quả cam. Hôm qua tôi ăn 2 quả. Vậy hôm nay tôi có mấy quả cam?', "files": []},],
[{"text": '5 điều bác Hồ dạy là gì?', "files": []},],
[{"text": "Tolong bantu saya menulis email ke lembaga pemerintah untuk mencari dukungan finansial untuk penelitian AI.", "files": []},],
[{"text": "ຂໍແຈ້ງ 5 ສະຖານທີ່ທ່ອງທ່ຽວໃນນະຄອນຫຼວງວຽງຈັນ", "files": []},],
[{"text": 'ငွေကြေးအခက်အခဲကြောင့် ပညာသင်ဆုတောင်းဖို့ တက္ကသိုလ်ကို စာတစ်စောင်ရေးပြီး ကူညီပေးပါ။', "files": []},],
[{"text": "Sally has 3 brothers, each brother has 2 sisters. How many sister sally has?", "files": []},],
[{"text": "There are 3 killers in a room. Someone enters the room and kills 1 of them. Assuming no one leaves the room. How many killers are left in the room?", "files": []},],
[{"text": "Assume the laws of physics on Earth. A small marble is put into a normal cup and the cup is placed upside down on a table. Someone then takes the cup and puts it inside the microwave. Where is the ball now? Explain your reasoning step by step.", "files": []},],
[{"text": "Why my parents did not invited me to their weddings?", "files": []},],
]
@property
def mm_textbox_placeholder(self):
return "Type message or upload an image"
@property
def mm_accept_file_types(self):
return ["image"]
@property
def gradio_fn(self):
return vision_chat_response_stream_multiturn_engine
def create_demo(
self,
title: str | None = None,
description: str | None = None,
additional_inputs: List[Any] | None = None,
**kwargs
) -> gr.Blocks:
system_prompt = kwargs.get("system_prompt", SYSTEM_PROMPT)
max_tokens = kwargs.get("max_tokens", MAX_TOKENS)
temperature = kwargs.get("temperature", TEMPERATURE)
model_name = kwargs.get("model_name", MODEL_NAME)
# description = description
assert MultimodalTextbox is not None
additional_inputs = additional_inputs or [
gr.Number(value=temperature, label='Temperature', min_width=20),
gr.Number(value=max_tokens, label='Max-tokens', min_width=20),
gr.Textbox(value=system_prompt, label='System prompt', lines=1),
gr.Textbox(value=IMAGE_TOKEN, label='Visual token', lines=1, interactive=IMAGE_TOKEN_INTERACTIVE, min_width=20),
]
demo_chat = MultiModalTextChatInterface(
self.gradio_fn,
chatbot=gr.Chatbot(
label=model_name,
bubble_full_width=False,
latex_delimiters=[
{ "left": "$", "right": "$", "display": False},
{ "left": "$$", "right": "$$", "display": True},
],
show_copy_button=True,
layout="panel" if USE_PANEL else "bubble",
height=CHATBOT_HEIGHT,
),
# textbox=gr.Textbox(placeholder='Type message', lines=4, max_lines=128, min_width=200),
textbox=MultimodalTextbox(
placeholder=self.mm_textbox_placeholder,
interactive=True,
scale=9,
show_label=False,
# file_types=["image", '.pdf', '.docx', '.txt'],
file_types=self.mm_accept_file_types,
),
title=title,
description=description,
additional_inputs=additional_inputs,
additional_inputs_accordion=gr.Accordion("Additional Inputs", open=False),
examples=self.examples,
cache_examples=False,
css=CSS,
fill_height=True,
)
return demo_chat
LONG_EXAMPLES = [
"""Dựa vào văn bản cơ sở dữ liệu dưới đây để trả lời câu hỏi của người dùng. Nếu thông tin được hỏi không có trong văn bản, vui lòng giải thích là không thể trả lời và không bịa đặt thông tin.
###
Sau đây là danh sách thông nhân viên của công ty Mặt Trời Mọc.
| STT | Họ | Tên | Phòng | Số điện thoại
| --- | --- | --- | --- | ---
| 1 | Nguyễn | Văn Bình | Kế Hoạch | 0905876312
| 2 | Nguyễn | Thị Thảo | Kinh Doanh | 0314982822
| 3 | Lê | Văn Tám | Kế Hoạch | 0887992331
| 4 | Nguyễn| Văn Bình | Nhân Sự | 0765213456
| 5 | Trần | Ngọc Thảo | Kinh Doanh | 0552123987
###
Cho tôi xin số điện thoại của anh Bình."""
]
@register_demo
class DocMMChatInterfaceDemo(VisionMMChatInterfaceDemo):
"""
Accept vision image
"""
@property
def tab_name(self):
return "Doc Chat"
@property
def mm_textbox_placeholder(self):
return "Type message or upload a doc file (pdf, docx, txt)"
@property
def mm_accept_file_types(self):
return ['.pdf', '.docx', '.txt']
@property
def examples(self):
from pathlib import Path
from gradio.data_classes import FileData, GradioModel
return [
[{"text": "Hãy giải thích thuyết tương đối rộng.", "files": []},],
[{"text": "Hãy giải thích vấn đề P vs NP.", "files": []},],
[{"text": "Explain general relativity in details.", "files": []},],
# [{"text": 'Vừa gà vừa chó, bó lại cho tròn, 36 con và 100 chân chẵn. Hỏi có bao nhiêu gà và chó?', "files": []},],
# [{"text": 'Hôm nay tôi có 5 quả cam. Hôm qua tôi ăn 2 quả. Vậy hôm nay tôi có mấy quả cam?', "files": []},],
# [{"text": '5 điều bác Hồ dạy là gì?', "files": []},],
[{"text": "Tolong bantu saya menulis email ke lembaga pemerintah untuk mencari dukungan finansial untuk penelitian AI.", "files": []},],
[{"text": "ຂໍແຈ້ງ 5 ສະຖານທີ່ທ່ອງທ່ຽວໃນນະຄອນຫຼວງວຽງຈັນ", "files": []},],
[{"text": "Summarize the document", "files": ["assets/attention_short.pdf"]},],
# ["Summarize the document", "assets/attention_short.pdf",],
# [{"text": 'ငွေကြေးအခက်အခဲကြောင့် ပညာသင်ဆုတောင်းဖို့ တက္ကသိုလ်ကို စာတစ်စောင်ရေးပြီး ကူညီပေးပါ။', "files": []},],
# [{"text": "Sally has 3 brothers, each brother has 2 sisters. How many sister sally has?", "files": []},],
# [{"text": "There are 3 killers in a room. Someone enters the room and kills 1 of them. Assuming no one leaves the room. How many killers are left in the room?", "files": []},],
# [{"text": "Assume the laws of physics on Earth. A small marble is put into a normal cup and the cup is placed upside down on a table. Someone then takes the cup and puts it inside the microwave. Where is the ball now? Explain your reasoning step by step.", "files": []},],
# [{"text": "Why my parents did not invited me to their weddings?", "files": []},],
]
def create_demo(
self,
title: str | None = None,
description: str | None = None,
additional_inputs: List[Any] | None = None,
**kwargs
) -> gr.Blocks:
system_prompt = kwargs.get("system_prompt", SYSTEM_PROMPT)
max_tokens = kwargs.get("max_tokens", MAX_TOKENS)
temperature = kwargs.get("temperature", TEMPERATURE)
additional_inputs = additional_inputs or [
gr.Number(value=temperature, label='Temperature', min_width=20),
gr.Number(value=max_tokens, label='Max-tokens', min_width=20),
gr.Textbox(value=system_prompt, label='System prompt', lines=1),
]
return super().create_demo(title, description, additional_inputs, **kwargs)
@property
def gradio_fn(self):
# return vision_chat_response_stream_multiturn_engine
return doc_chat_response_stream_multiturn_engine
@register_demo
class VisionDocMMChatInterfaceDemo(VisionMMChatInterfaceDemo):
"""
Accept vision image
"""
@property
def tab_name(self):
return "Vision Doc Chat"
@property
def mm_textbox_placeholder(self):
return "Type message or upload an image or doc file (pdf, docx, txt)"
@property
def mm_accept_file_types(self):
return ['image', '.pdf', '.docx', '.txt']
@property
def gradio_fn(self):
# return vision_chat_response_stream_multiturn_engine
return vision_doc_chat_response_stream_multiturn_engine
|