SebastianSchramm
commited on
Commit
•
2f8f51f
1
Parent(s):
e7b3eec
add app
Browse files- app.py +156 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextIteratorStreamer
|
4 |
+
import torch
|
5 |
+
from threading import Thread
|
6 |
+
from huggingface_hub import Repository
|
7 |
+
import json
|
8 |
+
|
9 |
+
theme = gr.themes.Monochrome(
|
10 |
+
primary_hue="indigo",
|
11 |
+
secondary_hue="blue",
|
12 |
+
neutral_hue="slate",
|
13 |
+
radius_size=gr.themes.sizes.radius_sm,
|
14 |
+
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
|
15 |
+
)
|
16 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
17 |
+
|
18 |
+
# Load peft config for pre-trained checkpoint etc.
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
model_id = "SebastianSchramm/Cerebras-GPT-111M-instruction"
|
21 |
+
if device == "cpu":
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
23 |
+
else:
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
26 |
+
|
27 |
+
prompt_template = "Below is an instruction that describes a task, paired with an input that provides further context.\n" \
|
28 |
+
"Write a response that appropriately completes the request.\n\n" \
|
29 |
+
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
|
30 |
+
|
31 |
+
|
32 |
+
def generate(instruction, input, temperature=1.0, max_new_tokens=256, top_p=0.9, length_penalty=1.0):
|
33 |
+
formatted_instruction = prompt_template.format(instruction=instruction, input=input)
|
34 |
+
|
35 |
+
# make sure temperature top_p and length_penalty are floats
|
36 |
+
temperature = float(temperature)
|
37 |
+
top_p = float(top_p)
|
38 |
+
length_penalty = float(length_penalty)
|
39 |
+
|
40 |
+
# STREAMING BASED ON git+https://github.com/gante/transformers.git@streamer_iterator
|
41 |
+
|
42 |
+
# streaming
|
43 |
+
streamer = TextIteratorStreamer(tokenizer)
|
44 |
+
model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048)
|
45 |
+
# move to gpu
|
46 |
+
model_inputs = {k: v.to(device) for k, v in model_inputs.items()}
|
47 |
+
|
48 |
+
generate_kwargs = dict(
|
49 |
+
top_p=top_p,
|
50 |
+
top_k=0,
|
51 |
+
temperature=temperature,
|
52 |
+
do_sample=True,
|
53 |
+
max_new_tokens=max_new_tokens,
|
54 |
+
early_stopping=True,
|
55 |
+
length_penalty=length_penalty,
|
56 |
+
eos_token_id=tokenizer.eos_token_id,
|
57 |
+
pad_token_id=tokenizer.eos_token_id,
|
58 |
+
)
|
59 |
+
t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
|
60 |
+
t.start()
|
61 |
+
|
62 |
+
output = ""
|
63 |
+
hidden_output = ""
|
64 |
+
for new_text in streamer:
|
65 |
+
# skip streaming until new text is available
|
66 |
+
if len(hidden_output) <= len(formatted_instruction):
|
67 |
+
hidden_output += new_text
|
68 |
+
continue
|
69 |
+
# replace eos token
|
70 |
+
if tokenizer.eos_token in new_text:
|
71 |
+
new_text = new_text.replace(tokenizer.eos_token, "")
|
72 |
+
output += new_text
|
73 |
+
yield output
|
74 |
+
return output
|
75 |
+
|
76 |
+
examples = [
|
77 |
+
]
|
78 |
+
|
79 |
+
def process_example(args):
|
80 |
+
for x in generate(args):
|
81 |
+
pass
|
82 |
+
return x
|
83 |
+
|
84 |
+
with gr.Blocks(theme=theme) as demo:
|
85 |
+
with gr.Column():
|
86 |
+
gr.Markdown(
|
87 |
+
"""<h1><center>Instruction-tuned Cerebras GPT 111M Language Model for Text</center></h1>
|
88 |
+
<p>
|
89 |
+
[Cerebras-GPT-111M-instruction](SebastianSchramm/Cerebras-GPT-111M-instruction)
|
90 |
+
</p>
|
91 |
+
"""
|
92 |
+
)
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column(scale=3):
|
95 |
+
instruction = gr.Textbox(placeholder="Instruction...", label="instruction")
|
96 |
+
input = gr.Textbox(placeholder="Input...", label="input")
|
97 |
+
output = gr.Textbox(
|
98 |
+
interactive=False,
|
99 |
+
lines=8,
|
100 |
+
label="Response",
|
101 |
+
placeholder="Response will be shown here...",
|
102 |
+
)
|
103 |
+
submit = gr.Button("Generate", variant="primary")
|
104 |
+
gr.Examples(
|
105 |
+
examples=examples,
|
106 |
+
inputs=[instruction, input],
|
107 |
+
cache_examples=True,
|
108 |
+
fn=process_example,
|
109 |
+
outputs=[output],
|
110 |
+
)
|
111 |
+
|
112 |
+
with gr.Column(scale=1):
|
113 |
+
temperature = gr.Slider(
|
114 |
+
label="Temperature",
|
115 |
+
value=1.0,
|
116 |
+
minimum=0.01,
|
117 |
+
maximum=1.0,
|
118 |
+
step=0.1,
|
119 |
+
interactive=True,
|
120 |
+
info="The higher more random",
|
121 |
+
)
|
122 |
+
max_new_tokens = gr.Slider(
|
123 |
+
label="Max new tokens",
|
124 |
+
value=256,
|
125 |
+
minimum=0,
|
126 |
+
maximum=2048,
|
127 |
+
step=5,
|
128 |
+
interactive=True,
|
129 |
+
info="The maximum numbers of new tokens",
|
130 |
+
)
|
131 |
+
top_p = gr.Slider(
|
132 |
+
label="Top p",
|
133 |
+
value=0.9,
|
134 |
+
minimum=0.01,
|
135 |
+
maximum=1,
|
136 |
+
step=0.05,
|
137 |
+
interactive=True,
|
138 |
+
info="probabilities that add up are kept",
|
139 |
+
)
|
140 |
+
length_penalty = gr.Slider(
|
141 |
+
label="Length penalty",
|
142 |
+
value=1.0,
|
143 |
+
minimum=-10.0,
|
144 |
+
maximum=10.0,
|
145 |
+
step=0.1,
|
146 |
+
interactive=True,
|
147 |
+
info="> 0.0 longer, < 0.0 shorter",
|
148 |
+
)
|
149 |
+
|
150 |
+
submit.click(generate, inputs=[instruction, input, temperature, max_new_tokens, top_p, length_penalty], outputs=[output])
|
151 |
+
instruction.submit(
|
152 |
+
generate, inputs=[instruction, input, temperature, max_new_tokens, top_p, length_penalty], outputs=[output]
|
153 |
+
)
|
154 |
+
|
155 |
+
demo.queue(concurrency_count=1)
|
156 |
+
demo.launch(enable_queue=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/peft.git
|
2 |
+
git+https://github.com/huggingface/transformers.git
|
3 |
+
huggingface_hub
|
4 |
+
accelerate==0.17.1
|
5 |
+
bitsandbytes
|