Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,80 +1,71 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import torch
|
3 |
-
from transformers import AutoTokenizer
|
4 |
-
from semviqa.
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
#
|
17 |
-
st.
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
}
|
25 |
-
.
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
tokens = inputs["input_ids"][0][start_idx : end_idx + 1]
|
73 |
-
evidence_result = tokenizer.decode(tokens, skip_special_tokens=True)
|
74 |
-
|
75 |
-
st.markdown("""
|
76 |
-
<div class='result-box'>
|
77 |
-
<h3>π Result</h3>
|
78 |
-
<p><strong>π Evidence:</strong> {}</p>
|
79 |
-
</div>
|
80 |
-
""".format(evidence_result), unsafe_allow_html=True)
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from semviqa.ser.qatc_model import QATCForQuestionAnswering
|
5 |
+
from semviqa.tvc.model import ClaimModelForClassification
|
6 |
+
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
|
7 |
+
from semviqa.tvc.tvc_eval import classify_claim
|
8 |
+
|
9 |
+
# Load models with caching
|
10 |
+
@st.cache_resource()
|
11 |
+
def load_model(model_name, model_class):
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model = model_class.from_pretrained(model_name)
|
14 |
+
return tokenizer, model
|
15 |
+
|
16 |
+
# UI Configuration
|
17 |
+
st.set_page_config(page_title="SemViQA Demo", layout="wide")
|
18 |
+
|
19 |
+
st.markdown("""
|
20 |
+
<style>
|
21 |
+
.big-title { font-size: 36px; font-weight: bold; color: #4A90E2; text-align: center; }
|
22 |
+
.sub-title { font-size: 20px; color: #666; text-align: center; }
|
23 |
+
.stButton>button { background-color: #4CAF50; color: white; font-size: 16px; width: 100%; border-radius: 8px; padding: 10px; }
|
24 |
+
.stTextArea textarea { font-size: 16px; }
|
25 |
+
.result-box { background-color: #f9f9f9; padding: 20px; border-radius: 10px; box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); }
|
26 |
+
</style>
|
27 |
+
""", unsafe_allow_html=True)
|
28 |
+
|
29 |
+
st.markdown("<p class='big-title'>π SemViQA: Vietnamese Fact-Checking System</p>", unsafe_allow_html=True)
|
30 |
+
st.markdown("<p class='sub-title'>Enter a claim and context to verify its accuracy</p>", unsafe_allow_html=True)
|
31 |
+
|
32 |
+
# Sidebar - Configuration Settings
|
33 |
+
with st.sidebar.expander("βοΈ Settings", expanded=False):
|
34 |
+
tfidf_threshold = st.slider("π§ TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
|
35 |
+
length_ratio_threshold = st.slider("π Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
|
36 |
+
qatc_model_name = st.selectbox("π€ QATC Model", ["xuandin/semviqa-qatc-vimrc-viwikifc"])
|
37 |
+
bc_model_name = st.selectbox("π·οΈ Binary Classification Model", ["xuandin/semviqa-bc"])
|
38 |
+
tc_model_name = st.selectbox("π Three-Class Model", ["xuandin/semviqa-tc"])
|
39 |
+
|
40 |
+
# Load selected models
|
41 |
+
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
|
42 |
+
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification)
|
43 |
+
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)
|
44 |
+
|
45 |
+
# User Input Fields
|
46 |
+
claim = st.text_area("βοΈ Enter Claim", "Vietnam is a country in Southeast Asia.")
|
47 |
+
context = st.text_area("π Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 kmΒ² with a population of more than 98 million people.")
|
48 |
+
|
49 |
+
if st.button("π Verify"):
|
50 |
+
# Extract evidence
|
51 |
+
evidence = extract_evidence_tfidf_qatc(
|
52 |
+
claim, context, model_qatc, tokenizer_qatc, "cuda" if torch.cuda.is_available() else "cpu",
|
53 |
+
confidence_threshold=tfidf_threshold, length_ratio_threshold=length_ratio_threshold
|
54 |
+
)
|
55 |
+
|
56 |
+
# Claim Classification
|
57 |
+
verdict = "NEI"
|
58 |
+
prob3class, pred_tc = classify_claim(claim, evidence, model_tc, tokenizer_tc, "cuda" if torch.cuda.is_available() else "cpu")
|
59 |
+
|
60 |
+
if pred_tc != 0:
|
61 |
+
prob2class, pred_bc = classify_claim(claim, evidence, model_bc, tokenizer_bc, "cuda" if torch.cuda.is_available() else "cpu")
|
62 |
+
verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
|
63 |
+
|
64 |
+
# Display Results
|
65 |
+
st.markdown(f"""
|
66 |
+
<div class='result-box'>
|
67 |
+
<h3>π Result</h3>
|
68 |
+
<p><strong>π Evidence:</strong> {evidence}</p>
|
69 |
+
<p><strong>β
Verdict:</strong> {verdict}</p>
|
70 |
+
</div>
|
71 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|