xuandin commited on
Commit
f4d5aab
Β·
verified Β·
1 Parent(s): e813be9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -80
app.py CHANGED
@@ -1,80 +1,71 @@
1
- import streamlit as st
2
- import torch
3
- from transformers import AutoTokenizer
4
- from semviqa.SER.qatc_model import QATCForQuestionAnswering
5
-
6
- # Load QATC Model
7
- @st.cache_resource()
8
- def load_qatc_model():
9
- tokenizer = AutoTokenizer.from_pretrained("xuandin/semviqa-qatc-vimrc-viwikifc")
10
- model = QATCForQuestionAnswering.from_pretrained("xuandin/semviqa-qatc-vimrc-viwikifc")
11
- return tokenizer, model
12
-
13
- # Streamlit UI Configuration
14
- st.set_page_config(page_title="SemViQA Demo", layout="wide")
15
-
16
- # Improved UI Design
17
- st.markdown("""
18
- <style>
19
- .big-title {
20
- font-size: 36px;
21
- font-weight: bold;
22
- color: #4A90E2;
23
- text-align: center;
24
- }
25
- .sub-title {
26
- font-size: 20px;
27
- color: #666;
28
- text-align: center;
29
- }
30
- .stButton>button {
31
- background-color: #4CAF50;
32
- color: white;
33
- font-size: 16px;
34
- width: 100%;
35
- border-radius: 8px;
36
- padding: 10px;
37
- }
38
- .stTextArea textarea {
39
- font-size: 16px;
40
- }
41
- .result-box {
42
- background-color: #f9f9f9;
43
- padding: 20px;
44
- border-radius: 10px;
45
- box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
46
- }
47
- </style>
48
- """, unsafe_allow_html=True)
49
-
50
- st.markdown("<p class='big-title'>πŸ” SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking</p>", unsafe_allow_html=True)
51
- st.markdown("<p class='sub-title'>Enter a claim and context to verify its accuracy</p>", unsafe_allow_html=True)
52
-
53
- # Sidebar - Configuration Settings
54
- st.sidebar.header("βš™οΈ Settings")
55
- tfidf_threshold = st.sidebar.slider("πŸ”§ TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
56
- length_ratio_threshold = st.sidebar.slider("πŸ“ Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
57
- qatc_model = st.sidebar.selectbox("πŸ€– Select QATC Model", ["xuandin/semviqa-qatc-vimrc-viwikifc"])
58
-
59
- # User Input Fields
60
- claim = st.text_area("✍️ Enter Claim", "Vietnam is a country in Southeast Asia.")
61
- context = st.text_area("πŸ“– Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 kmΒ² with a population of more than 98 million people.")
62
-
63
- if st.button("πŸ”Ž Verify"):
64
- tokenizer, model = load_qatc_model()
65
- inputs = tokenizer(claim, context, return_tensors="pt", truncation=True, max_length=512)
66
-
67
- with torch.no_grad():
68
- outputs = model(**inputs)
69
-
70
- start_idx = torch.argmax(outputs.start_logits)
71
- end_idx = torch.argmax(outputs.end_logits)
72
- tokens = inputs["input_ids"][0][start_idx : end_idx + 1]
73
- evidence_result = tokenizer.decode(tokens, skip_special_tokens=True)
74
-
75
- st.markdown("""
76
- <div class='result-box'>
77
- <h3>πŸ“Œ Result</h3>
78
- <p><strong>πŸ” Evidence:</strong> {}</p>
79
- </div>
80
- """.format(evidence_result), unsafe_allow_html=True)
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import AutoTokenizer
4
+ from semviqa.ser.qatc_model import QATCForQuestionAnswering
5
+ from semviqa.tvc.model import ClaimModelForClassification
6
+ from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
7
+ from semviqa.tvc.tvc_eval import classify_claim
8
+
9
+ # Load models with caching
10
+ @st.cache_resource()
11
+ def load_model(model_name, model_class):
12
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
13
+ model = model_class.from_pretrained(model_name)
14
+ return tokenizer, model
15
+
16
+ # UI Configuration
17
+ st.set_page_config(page_title="SemViQA Demo", layout="wide")
18
+
19
+ st.markdown("""
20
+ <style>
21
+ .big-title { font-size: 36px; font-weight: bold; color: #4A90E2; text-align: center; }
22
+ .sub-title { font-size: 20px; color: #666; text-align: center; }
23
+ .stButton>button { background-color: #4CAF50; color: white; font-size: 16px; width: 100%; border-radius: 8px; padding: 10px; }
24
+ .stTextArea textarea { font-size: 16px; }
25
+ .result-box { background-color: #f9f9f9; padding: 20px; border-radius: 10px; box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); }
26
+ </style>
27
+ """, unsafe_allow_html=True)
28
+
29
+ st.markdown("<p class='big-title'>πŸ” SemViQA: Vietnamese Fact-Checking System</p>", unsafe_allow_html=True)
30
+ st.markdown("<p class='sub-title'>Enter a claim and context to verify its accuracy</p>", unsafe_allow_html=True)
31
+
32
+ # Sidebar - Configuration Settings
33
+ with st.sidebar.expander("βš™οΈ Settings", expanded=False):
34
+ tfidf_threshold = st.slider("πŸ”§ TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
35
+ length_ratio_threshold = st.slider("πŸ“ Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
36
+ qatc_model_name = st.selectbox("πŸ€– QATC Model", ["xuandin/semviqa-qatc-vimrc-viwikifc"])
37
+ bc_model_name = st.selectbox("🏷️ Binary Classification Model", ["xuandin/semviqa-bc"])
38
+ tc_model_name = st.selectbox("πŸ“Š Three-Class Model", ["xuandin/semviqa-tc"])
39
+
40
+ # Load selected models
41
+ tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
42
+ tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification)
43
+ tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)
44
+
45
+ # User Input Fields
46
+ claim = st.text_area("✍️ Enter Claim", "Vietnam is a country in Southeast Asia.")
47
+ context = st.text_area("πŸ“– Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 kmΒ² with a population of more than 98 million people.")
48
+
49
+ if st.button("πŸ”Ž Verify"):
50
+ # Extract evidence
51
+ evidence = extract_evidence_tfidf_qatc(
52
+ claim, context, model_qatc, tokenizer_qatc, "cuda" if torch.cuda.is_available() else "cpu",
53
+ confidence_threshold=tfidf_threshold, length_ratio_threshold=length_ratio_threshold
54
+ )
55
+
56
+ # Claim Classification
57
+ verdict = "NEI"
58
+ prob3class, pred_tc = classify_claim(claim, evidence, model_tc, tokenizer_tc, "cuda" if torch.cuda.is_available() else "cpu")
59
+
60
+ if pred_tc != 0:
61
+ prob2class, pred_bc = classify_claim(claim, evidence, model_bc, tokenizer_bc, "cuda" if torch.cuda.is_available() else "cpu")
62
+ verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
63
+
64
+ # Display Results
65
+ st.markdown(f"""
66
+ <div class='result-box'>
67
+ <h3>πŸ“Œ Result</h3>
68
+ <p><strong>πŸ” Evidence:</strong> {evidence}</p>
69
+ <p><strong>βœ… Verdict:</strong> {verdict}</p>
70
+ </div>
71
+ """, unsafe_allow_html=True)