import streamlit as st import torch from transformers import AutoTokenizer from semviqa.ser.qatc_model import QATCForQuestionAnswering from semviqa.tvc.model import ClaimModelForClassification from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc from semviqa.tvc.tvc_eval import classify_claim # Load models with caching @st.cache_resource() def load_model(model_name, model_class, is_bc=False): tokenizer = AutoTokenizer.from_pretrained(model_name) model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2) return tokenizer, model # Set up page configuration and custom CSS for a modern, clean look st.set_page_config(page_title="SemViQA Demo", layout="wide") st.markdown(""" """, unsafe_allow_html=True) st.markdown("

SemViQA: Semantic Question Answering System for Vietnamese Fact-Checking

", unsafe_allow_html=True) st.markdown("

Enter a claim and context to verify its accuracy

", unsafe_allow_html=True) # Sidebar: Settings and additional features with st.sidebar.expander("⚙️ Settings", expanded=False): tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01) length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01) qatc_model_name = st.selectbox("QATC Model", [ "SemViQA/qatc-infoxlm-viwikifc", "SemViQA/qatc-infoxlm-isedsc01", "SemViQA/qatc-vimrc-viwikifc", "SemViQA/qatc-vimrc-isedsc01" ]) bc_model_name = st.selectbox("Binary Classification Model", [ "SemViQA/bc-xlmr-viwikifc", "SemViQA/bc-xlmr-isedsc01", "SemViQA/bc-infoxlm-viwikifc", "SemViQA/bc-infoxlm-isedsc01", "SemViQA/bc-erniem-viwikifc", "SemViQA/bc-erniem-isedsc01" ]) tc_model_name = st.selectbox("Three-Class Classification Model", [ "SemViQA/tc-xlmr-viwikifc", "SemViQA/tc-xlmr-isedsc01", "SemViQA/tc-infoxlm-viwikifc", "SemViQA/tc-infoxlm-isedsc01", "SemViQA/tc-erniem-viwikifc", "SemViQA/tc-erniem-isedsc01" ]) show_details = st.checkbox("Show probability details", value=False) # Initialize verification history in session state if 'history' not in st.session_state: st.session_state.history = [] # Load the selected models tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering) tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True) tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification) # User input fields claim = st.text_area("Enter Claim", "Vietnam is a country in Southeast Asia.") context = st.text_area("Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 km² with a population of more than 98 million people.") # Define icon mapping for each verdict label verdict_icons = { "SUPPORTED": "✅", "REFUTED": "❌", "NEI": "⚠️" } if st.button("Verify"): with st.spinner("Verifying..."): # Extract evidence evidence = extract_evidence_tfidf_qatc( claim, context, model_qatc, tokenizer_qatc, "cuda" if torch.cuda.is_available() else "cpu", confidence_threshold=tfidf_threshold, length_ratio_threshold=length_ratio_threshold ) # Classify the claim verdict = "NEI" prob3class, pred_tc = classify_claim(claim, evidence, model_tc, tokenizer_tc, "cuda" if torch.cuda.is_available() else "cpu") details = "" if pred_tc != 0: prob2class, pred_bc = classify_claim(claim, evidence, model_bc, tokenizer_bc, "cuda" if torch.cuda.is_available() else "cpu") if pred_bc == 0: verdict = "SUPPORTED" elif prob2class > prob3class: verdict = "REFUTED" else: verdict = ["NEI", "SUPPORTED", "REFUTED"][pred_tc] if show_details: details = f"

3-Class Probability: {prob3class:.2f} - 2-Class Probability: {prob2class:.2f}

" # Save the verification record in session history st.session_state.history.append({ "claim": claim, "evidence": evidence, "verdict": verdict }) # Display the results with icon and label (without extra "Verdict:" text) st.markdown(f"""

Result

Evidence: {evidence}

{verdict_icons.get(verdict, '')}{verdict}

{details}
""", unsafe_allow_html=True) # Display verification history in the sidebar with st.sidebar.expander("Verification History", expanded=False): if st.session_state.history: for idx, record in enumerate(reversed(st.session_state.history), 1): st.markdown(f"**{idx}. Claim:** {record['claim']} \n**Result:** {verdict_icons.get(record['verdict'], '')} {record['verdict']}") else: st.write("No verification history yet.")