|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer |
|
import time |
|
import numpy as np |
|
from torch.nn import functional as F |
|
import os |
|
from threading import Thread |
|
|
|
print(f"Starting to load the model to memory") |
|
m = AutoModelForCausalLM.from_pretrained( |
|
"stabilityai/stablelm-2-1_6b-zephyr", torch_dtype=torch.float16, trust_remote_code=True) |
|
tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-1_6b-zephyr", trust_remote_code=True) |
|
generator = pipeline('text-generation', model=m, tokenizer=tok) |
|
print(f"Sucessfully loaded the model to the memory") |
|
|
|
start_message = "" |
|
|
|
def user(message, history): |
|
|
|
return "", history + [[message, ""]] |
|
|
|
|
|
def chat(history): |
|
chat = [] |
|
for item in history: |
|
chat.append({"role": "user", "content": item[0]}) |
|
if item[1] is not None: |
|
chat.append({"role": "assistant", "content": item[0]}) |
|
messages = tokenizer.apply_chat_template(chat, tokenize=False) |
|
|
|
model_inputs = tok([messages], return_tensors="pt") |
|
streamer = TextIteratorStreamer( |
|
tok, timeout=10., skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=1000, |
|
temperature=0.75, |
|
num_beams=1, |
|
) |
|
t = Thread(target=m.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
|
|
|
|
partial_text = "" |
|
for new_text in streamer: |
|
|
|
partial_text += new_text |
|
history[-1][1] = partial_text |
|
|
|
yield history |
|
return partial_text |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
gr.Markdown("## Stable LM 1.6b Zephyr") |
|
gr.HTML('''<center><a href="https://huggingface.co/spaces/stabilityai/stablelm-2-1_6b-zephyr?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space to skip the queue and run in a private space</center>''') |
|
chatbot = gr.Chatbot().style(height=500) |
|
with gr.Row(): |
|
with gr.Column(): |
|
msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box", |
|
show_label=False).style(container=False) |
|
with gr.Column(): |
|
with gr.Row(): |
|
submit = gr.Button("Submit") |
|
stop = gr.Button("Stop") |
|
clear = gr.Button("Clear") |
|
|
|
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( |
|
fn=chat, inputs=[chatbot], outputs=[chatbot], queue=True) |
|
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( |
|
fn=chat, inputs=[chatbot], outputs=[chatbot], queue=True) |
|
stop.click(fn=None, inputs=None, outputs=None, cancels=[ |
|
submit_event, submit_click_event], queue=False) |
|
clear.click(lambda: None, None, [chatbot], queue=False) |
|
|
|
demo.queue(max_size=32, concurrency_count=2) |
|
demo.launch() |
|
|