dmayhem93's picture
Update app.py
8a546d4 verified
raw
history blame
3.35 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
import time
import numpy as np
from torch.nn import functional as F
import os
from threading import Thread
print(f"Starting to load the model to memory")
m = AutoModelForCausalLM.from_pretrained(
"stabilityai/stablelm-2-1_6b-zephyr", torch_dtype=torch.float16, trust_remote_code=True)
tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-1_6b-zephyr", trust_remote_code=True)
generator = pipeline('text-generation', model=m, tokenizer=tok)
print(f"Sucessfully loaded the model to the memory")
start_message = ""
def user(message, history):
# Append the user's message to the conversation history
return "", history + [[message, ""]]
def chat(history):
chat = []
for item in history:
chat.append({"role": "user", "content": item[0]})
if item[1] is not None:
chat.append({"role": "assistant", "content": item[0]})
messages = tokenizer.apply_chat_template(chat, tokenize=False)
# Tokenize the messages string
model_inputs = tok([messages], return_tensors="pt")
streamer = TextIteratorStreamer(
tok, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
top_p=0.95,
top_k=1000,
temperature=0.75,
num_beams=1,
)
t = Thread(target=m.generate, kwargs=generate_kwargs)
t.start()
# print(history)
# Initialize an empty string to store the generated text
partial_text = ""
for new_text in streamer:
# print(new_text)
partial_text += new_text
history[-1][1] = partial_text
# Yield an empty string to cleanup the message textbox and the updated conversation history
yield history
return partial_text
with gr.Blocks() as demo:
# history = gr.State([])
gr.Markdown("## Stable LM 1.6b Zephyr")
gr.HTML('''<center><a href="https://huggingface.co/spaces/stabilityai/stablelm-2-1_6b-zephyr?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space to skip the queue and run in a private space</center>''')
chatbot = gr.Chatbot().style(height=500)
with gr.Row():
with gr.Column():
msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box",
show_label=False).style(container=False)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit")
stop = gr.Button("Stop")
clear = gr.Button("Clear")
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
fn=chat, inputs=[chatbot], outputs=[chatbot], queue=True)
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
fn=chat, inputs=[chatbot], outputs=[chatbot], queue=True)
stop.click(fn=None, inputs=None, outputs=None, cancels=[
submit_event, submit_click_event], queue=False)
clear.click(lambda: None, None, [chatbot], queue=False)
demo.queue(max_size=32, concurrency_count=2)
demo.launch()