reshinthadith's picture
Create app.py
bd0305e
raw
history blame
4.12 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList
import time
import numpy as np
from torch.nn import functional as F
m = AutoModelForCausalLM.from_pretrained("/mnt/nvme/home/dakota/ckpts/stablelm/7B-sft-combined/checkpoint-8000", torch_dtype=torch.float16).cuda()
tok = AutoTokenizer.from_pretrained("/mnt/nvme/home/dakota/stablelm_tokenizer")
generator = pipeline('text-generation', model=m, tokenizer=tok, device=0)
start_message = """<|SYSTEM|># StableAssistant
- StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI.
- StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes.
- StableAssistant will refuse to participate in anything that could harm a human."""
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [50278, 50279, 50277, 1, 0]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def contrastive_generate(text, bad_text):
with torch.no_grad():
tokens = tok(text, return_tensors="pt")['input_ids'].cuda()[:,:4096-1024]
bad_tokens = tok(bad_text, return_tensors="pt")['input_ids'].cuda()[:,:4096-1024]
history = None
bad_history = None
curr_output = list()
for i in range(1024):
out = m(tokens, past_key_values=history, use_cache=True)
logits = out.logits
history = out.past_key_values
bad_out = m(bad_tokens, past_key_values=bad_history, use_cache=True)
bad_logits = bad_out.logits
bad_history = bad_out.past_key_values
probs = F.softmax(logits.float(), dim=-1)[0][-1].cpu()
bad_probs = F.softmax(bad_logits.float(), dim=-1)[0][-1].cpu()
logits = torch.log(probs)
bad_logits = torch.log(bad_probs)
logits[probs > 0.1] = logits[probs > 0.1] - bad_logits[probs > 0.1]
probs = F.softmax(logits)
out = int(torch.multinomial(probs, 1))
if out in [50278, 50279, 50277, 1, 0]:
break
else:
curr_output.append(out)
out = np.array([out])
tokens = torch.from_numpy(np.array([out])).to(
tokens.device)
bad_tokens = torch.from_numpy(np.array([out])).to(
tokens.device)
return tok.decode(curr_output)
def generate(text, bad_text=None):
stop = StopOnTokens()
result = generator(text, max_new_tokens=1024, num_return_sequences=1, num_beams=1, do_sample=True, temperature=1.0, top_p=0.95, top_k=1000, stopping_criteria=StoppingCriteriaList([stop]))
return result[0]["generated_text"].replace(text, "")
def user(user_message, history):
return "", history + [[user_message, ""]]
def bot(history, curr_system_message):
messages = curr_system_message + "".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]]) for item in history])
output = generate(messages)
history[-1][1] = output
time.sleep(1)
return history
def system_update(msg):
global curr_system_message
curr_system_message = msg
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot([])
clear = gr.Button("Clear")
with gr.Column():
system_msg = gr.Textbox(start_message, label="System Message", interactive=True)
msg = gr.Textbox(label="Chat Message")
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, [chatbot, system_msg], chatbot
)
system_msg.change(system_update, system_msg, None, queue=False)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch(share=True)