|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer |
|
import time |
|
import numpy as np |
|
from torch.nn import functional as F |
|
import os |
|
from threading import Thread |
|
|
|
print(f"Starting to load the model to memory") |
|
m = AutoModelForCausalLM.from_pretrained( |
|
"stabilityai/stablelm-2-zephyr-1_6b", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, trust_remote_code=True) |
|
tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-zephyr-1_6b", trust_remote_code=True) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
m = m.to(device) |
|
print(f"Sucessfully loaded the model to the memory") |
|
|
|
|
|
start_message = "" |
|
|
|
def user(message, history): |
|
|
|
return "", history + [[message, ""]] |
|
|
|
|
|
def chat(message, history): |
|
chat = [] |
|
for item in history: |
|
chat.append({"role": "user", "content": item[0]}) |
|
if item[1] is not None: |
|
chat.append({"role": "assistant", "content": item[1]}) |
|
chat.append({"role": "user", "content": message}) |
|
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) |
|
|
|
model_inputs = tok([messages], return_tensors="pt").to(device) |
|
streamer = TextIteratorStreamer( |
|
tok, timeout=10., skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=1000, |
|
temperature=0.75, |
|
num_beams=1, |
|
) |
|
t = Thread(target=m.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
|
|
partial_text = "" |
|
for new_text in streamer: |
|
|
|
partial_text += new_text |
|
|
|
yield partial_text |
|
|
|
|
|
|
|
demo = gr.ChatInterface(fn=chat, examples=["hello", "hola", "merhaba"], title="Stable LM 2 Zephyr 1.6b") |
|
demo.launch() |