import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer import time import numpy as np from torch.nn import functional as F import os from threading import Thread print(f"Starting to load the model to memory") m = AutoModelForCausalLM.from_pretrained( "stabilityai/stablelm-2-zephyr-1_6b", torch_dtype=torch.float32, trust_remote_code=True) tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-zephyr-1_6b", trust_remote_code=True) generator = pipeline('text-generation', model=m, tokenizer=tok) print(f"Sucessfully loaded the model to the memory") start_message = "" def user(message, history): # Append the user's message to the conversation history return "", history + [[message, ""]] def chat(message, history): chat = [] for item in history: chat.append({"role": "user", "content": item[0]}) if item[1] is not None: chat.append({"role": "assistant", "content": item[1]}) chat.append({"role": "user", "content": message}) messages = tok.apply_chat_template(chat, tokenize=False) # Tokenize the messages string model_inputs = tok([messages], return_tensors="pt") streamer = TextIteratorStreamer( tok, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.95, top_k=1000, temperature=0.75, num_beams=1, ) t = Thread(target=m.generate, kwargs=generate_kwargs) t.start() # print(history) # Initialize an empty string to store the generated text partial_text = "" for new_text in streamer: # print(new_text) partial_text += new_text history[-1][1] = partial_text # Yield an empty string to cleanup the message textbox and the updated conversation history yield history return partial_text # with gr.Blocks() as demo: # # history = gr.State([]) # gr.Markdown("## Stable LM 2 Zephyr 1.6b") # gr.HTML('''
Duplicate SpaceDuplicate the Space to skip the queue and run in a private space
''') # chatbot = gr.Chatbot().style(height=500) # with gr.Row(): # with gr.Column(): # msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box", # show_label=False).style(container=False) # with gr.Column(): # with gr.Row(): # submit = gr.Button("Submit") # stop = gr.Button("Stop") # clear = gr.Button("Clear") # submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( # fn=chat, inputs=[chatbot], outputs=[chatbot], queue=True) # submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( # fn=chat, inputs=[chatbot], outputs=[chatbot], queue=True) # stop.click(fn=None, inputs=None, outputs=None, cancels=[ # submit_event, submit_click_event], queue=False) # clear.click(lambda: None, None, [chatbot], queue=False) demo = gr.ChatInterface(fn=echo, examples=["hello", "hola", "merhaba"], title="Stable LM 2 Zephyr 1.6b") demo.queue(max_size=32, concurrency_count=2) demo.launch()