import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer import time import numpy as np from torch.nn import functional as F import os from threading import Thread print(f"Starting to load the model to memory") m = AutoModelForCausalLM.from_pretrained( "stabilityai/stablelm-2-zephyr-1_6b", torch_dtype=torch.float32, trust_remote_code=True) tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-zephyr-1_6b", trust_remote_code=True) generator = pipeline('text-generation', model=m, tokenizer=tok) print(f"Sucessfully loaded the model to the memory") start_message = "" def user(message, history): # Append the user's message to the conversation history return "", history + [[message, ""]] def chat(message, history): chat = [] for item in history: chat.append({"role": "user", "content": item[0]}) if item[1] is not None: chat.append({"role": "assistant", "content": item[1]}) chat.append({"role": "user", "content": message}) messages = tok.apply_chat_template(chat, tokenize=False) # Tokenize the messages string model_inputs = tok([messages], return_tensors="pt") streamer = TextIteratorStreamer( tok, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.95, top_k=1000, temperature=0.75, num_beams=1, ) t = Thread(target=m.generate, kwargs=generate_kwargs) t.start() # print(history) # Initialize an empty string to store the generated text partial_text = "" for new_text in streamer: # print(new_text) partial_text += new_text history[-1][1] = partial_text # Yield an empty string to cleanup the message textbox and the updated conversation history yield history return partial_text # with gr.Blocks() as demo: # # history = gr.State([]) # gr.Markdown("## Stable LM 2 Zephyr 1.6b") # gr.HTML('''