File size: 5,954 Bytes
fcdbac9
 
 
 
 
 
 
 
 
 
 
bb78b14
 
fcdbac9
 
 
 
 
 
 
 
 
bb78b14
 
 
 
 
 
fcdbac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb78b14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcdbac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb78b14
fcdbac9
 
 
 
 
bb78b14
fcdbac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb78b14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import gradio as gr
from PIL import Image
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
import tensorflow as tf
from PIL import ImageDraw

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# image segmentation ๋ชจ๋ธ
feature_extractor = SegformerFeatureExtractor.from_pretrained(
    "nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
)
model_segmentation = TFSegformerForSemanticSegmentation.from_pretrained(
    "nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
)

# image detection ๋ชจ๋ธ
# processor_detection = DetrImageProcessor.from_pretrained(
#     "facebook/detr-resnet-50", revision="no_timm"
# )
# model_detection = DetrForObjectDetection.from_pretrained(
#     "facebook/detr-resnet-50", revision="no_timm"
# )


def ade_palette():
    """ADE20K ํŒ”๋ ˆํŠธ: ๊ฐ ํด๋ž˜์Šค๋ฅผ RGB ๊ฐ’์— ๋งคํ•‘ํ•ด์ฃผ๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค."""

    return [
        [204, 87, 92],
        [112, 185, 212],
        [45, 189, 106],
        [234, 123, 67],
        [78, 56, 123],
        [210, 32, 89],
        [90, 180, 56],
        [155, 102, 200],
        [33, 147, 176],
        [255, 183, 76],
        [67, 123, 89],
        [190, 60, 45],
        [134, 112, 200],
        [56, 45, 189],
        [200, 56, 123],
        [87, 92, 204],
        [120, 56, 123],
        [45, 78, 123],
        [45, 123, 67],
    ]


labels_list = []

with open(r"labels.txt", "r") as fp:
    for line in fp:
        labels_list.append(line[:-1])

colormap = np.asarray(ade_palette())


def label_to_color_image(label):
    """๋ผ๋ฒจ์„ ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€๋กœ ๋ณ€ํ™˜ํ•ด์ฃผ๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค."""

    if label.ndim != 2:
        raise ValueError("2์ฐจ์› ์ž…๋ ฅ ๋ผ๋ฒจ์„ ๊ธฐ๋Œ€ํ•ฉ๋‹ˆ๋‹ค.")

    if np.max(label) >= len(colormap):
        raise ValueError("๋ผ๋ฒจ ๊ฐ’์ด ๋„ˆ๋ฌด ํฝ๋‹ˆ๋‹ค.")
    return colormap[label]


def draw_plot(pred_img, seg):
    """์ด๋ฏธ์ง€์™€ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ๊ฒฐ๊ณผ๋ฅผ floating ํ•˜๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค."""

    fig = plt.figure(figsize=(20, 15))
    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis("off")
    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg.numpy().astype("uint8"))
    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
    ax.yaxis.tick_right()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=25)

    return fig


def sepia(inputs, button_text):
    """๊ฐ์ฒด ๊ฒ€์ถœ ๋˜๋Š” ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ๊ฒฐ๊ณผ๋ฅผ ๋ฐ˜ํ™˜ํ•˜๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค."""

    input_img = Image.fromarray(inputs)
    # if button_text == "detection":
    #     inputs_detection = processor_detection(images=input_img, return_tensors="pt")
    #     outputs_detection = model_detection(**inputs_detection)

    #     target_sizes = torch.tensor([input_img.size[::-1]])
    #     results_detection = processor_detection.post_process_object_detection(
    #         outputs_detection, target_sizes=target_sizes, threshold=0.9
    #     )[0]

    #     draw = ImageDraw.Draw(input_img)
    #     for score, label, box in zip(
    #         results_detection["scores"],
    #         results_detection["labels"],
    #         results_detection["boxes"],
    #     ):
    #         box = [round(i, 2) for i in box.tolist()]
    #         label_name = model_detection.config.id2label[label.item()]
    #         print(
    #             f"Detected {label_name} with confidence "
    #             f"{round(score.item(), 3)} at location {box}"
    #         )
    #         draw.rectangle(box, outline="red", width=3)
    #         draw.text((box[0], box[1]), label_name, fill="red", font=None)

    #     fig = plt.figure(figsize=(20, 15))
    #     plt.imshow(input_img)
    #     plt.axis("off")
    #     return fig

    if button_text == "segmentation":
        inputs_segmentation = feature_extractor(images=input_img, return_tensors="tf")
        outputs_segmentation = model_segmentation(**inputs_segmentation)
        logits_segmentation = outputs_segmentation.logits

        logits_segmentation = tf.transpose(logits_segmentation, [0, 2, 3, 1])
        logits_segmentation = tf.image.resize(logits_segmentation, input_img.size[::-1])
        seg = tf.math.argmax(logits_segmentation, axis=-1)[0]

        color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
        for label, color in enumerate(colormap):
            color_seg[seg.numpy() == label, :] = color

        pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
        pred_img = pred_img.astype(np.uint8)

        fig = draw_plot(pred_img, seg)
        return fig
    
    return "Please select 'detection' or 'segmentation'."

def on_button_click(inputs):
    """๋ฒ„ํŠผ ํด๋ฆญ ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ"""
    image_path, selected_option = inputs
    if selected_option == "dropout":
        # 'dropout'์ด๋ฉด ๋‘ ๊ฐ€์ง€ ์ค‘์— ํ•˜๋‚˜๋ฅผ ๋žœ๋ค์œผ๋กœ ์„ ํƒ
        selected_option = np.random.choice(["segmentation"])
    
    return sepia(image_path, selected_option)

# Gr.Dropdown์„ ์‚ฌ์šฉํ•˜์—ฌ ์˜ต์…˜์„ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋„๋ก ๋ณ€๊ฒฝ
dropdown = gr.Dropdown(
            ["segmentation"], label="Menu", info="Chose Segmentation!"
        )

demo = gr.Interface(
    fn=sepia,
    inputs=[gr.Image(shape=(400, 600)), dropdown],
    outputs=["plot"],
    examples=[
        ["01.jpg", "Click me"],
        ["02.jpeg", "Click me"],
        ["03.jpeg", "Click me"],
        ["04.jpeg", "Click me"],
    ],
    allow_flagging="never",
)

demo.launch()