Sephfox commited on
Commit
16e8b2c
1 Parent(s): 58b7673

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -22
app.py CHANGED
@@ -459,19 +459,34 @@ def create_sensation_map(width, height, keypoints):
459
  def create_heatmap(sensation_map, sensation_type):
460
  plt.figure(figsize=(10, 15))
461
  sns.heatmap(sensation_map[:, :, sensation_type], cmap='viridis')
462
- plt.title(f'{["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field", "Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"][sensation_type]} Sensation Map')
463
- plt.axis('off')
464
 
465
- buf = io.BytesIO()
466
- plt.savefig(buf, format='png')
467
- buf.seek(0)
 
 
 
 
 
 
468
 
469
- data = base64.b64encode(buf.getvalue()).decode('utf-8')
 
 
 
 
 
 
 
 
470
 
471
- plt.close()
 
 
 
 
472
 
473
- return
474
- f'data:image/png;base64,{data}'
475
 
476
  # Streamlit app
477
  st.title("NeuraSense AI - Humanoid Touch Point Detection")
@@ -505,22 +520,11 @@ if uploaded_file is not None:
505
 
506
  # Generate AI response based on the image and sensations
507
  if st.button("Generate AI Response"):
508
- # You can customize this part to generate more specific responses based on the detected keypoints and sensations
509
  response = generate_ai_response(keypoints, sensation_map)
510
  st.write("AI Response:", response)
511
 
512
- def generate_ai_response(keypoints, sensation_map):
513
- # This is a simple example. You can make this more sophisticated based on your needs.
514
- num_keypoints = len(keypoints)
515
- avg_sensations = np.mean(sensation_map, axis=(0, 1))
516
-
517
- response = f"I detect {num_keypoints} key points on the humanoid figure. "
518
- response += "The average sensations across the body are:\n"
519
- for i, sensation in enumerate(["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field",
520
- "Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"]):
521
- response += f"{sensation}: {avg_sensations[i]:.2f}\n"
522
-
523
- return response
524
 
525
 
526
  # Create futuristic human-like avatar
 
459
  def create_heatmap(sensation_map, sensation_type):
460
  plt.figure(figsize=(10, 15))
461
  sns.heatmap(sensation_map[:, :, sensation_type], cmap='viridis')
 
 
462
 
463
+ def create_heatmap(sensation_map, sensation_type):
464
+ plt.figure(figsize=(10, 15))
465
+ sns.heatmap(sensation_map[:, :, sensation_type], cmap='viridis')
466
+ plt.title(f'{["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field", "Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"][sensation_type]} Sensation Map')
467
+ plt.axis('off')
468
+
469
+ buf = io.BytesIO()
470
+ plt.savefig(buf, format='png')
471
+ buf.seek(0)
472
 
473
+ data = base64.b64encode(buf.getvalue()).decode('utf-8')
474
+
475
+ plt.close()
476
+
477
+ return f'data:image/png;base64,{data}'
478
+
479
+ def generate_ai_response(keypoints, sensation_map):
480
+ num_keypoints = len(keypoints)
481
+ avg_sensations = np.mean(sensation_map, axis=(0, 1))
482
 
483
+ response = f"I detect {num_keypoints} key points on the humanoid figure. "
484
+ response += "The average sensations across the body are:\n"
485
+ for i, sensation in enumerate(["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field",
486
+ "Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"]):
487
+ response += f"{sensation}: {avg_sensations[i]:.2f}\n"
488
 
489
+ return response
 
490
 
491
  # Streamlit app
492
  st.title("NeuraSense AI - Humanoid Touch Point Detection")
 
520
 
521
  # Generate AI response based on the image and sensations
522
  if st.button("Generate AI Response"):
 
523
  response = generate_ai_response(keypoints, sensation_map)
524
  st.write("AI Response:", response)
525
 
526
+
527
+
 
 
 
 
 
 
 
 
 
 
528
 
529
 
530
  # Create futuristic human-like avatar