Sephfox commited on
Commit
35e6a69
Β·
verified Β·
1 Parent(s): c190cf0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +419 -295
app.py CHANGED
@@ -1,4 +1,3 @@
1
- import streamlit as st
2
  import numpy as np
3
  import matplotlib.pyplot as plt
4
  from PIL import Image, ImageDraw, ImageFont
@@ -7,343 +6,468 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
7
  import io
8
  import base64
9
  from streamlit_drawable_canvas import st_canvas
10
- import plotly.graph_objects as go
11
- import json
12
- from datetime import datetime
13
- import os
14
 
15
  # Set page config for a futuristic look
16
  st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide")
17
 
 
 
18
  # Custom CSS for a futuristic look
19
  st.markdown("""
20
  <style>
21
- body {
22
- color: #E0E0E0;
23
- background-color: #0E1117;
24
- }
25
- .stApp {
26
- background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%);
27
- }
28
- .stButton>button {
29
- color: #00FFFF;
30
- border-color: #00FFFF;
31
- border-radius: 20px;
32
- }
33
- .stSlider>div>div>div>div {
34
- background-color: #00FFFF;
35
- }
36
- .stTextArea, .stNumberInput, .stSelectbox {
37
- background-color: #1A1F2C;
38
- color: #00FFFF;
39
- border-color: #00FFFF;
40
- border-radius: 20px;
41
- }
42
- .stTextArea:focus, .stNumberInput:focus, .stSelectbox:focus {
43
- box-shadow: 0 0 10px #00FFFF;
44
- }
45
  </style>
46
  """, unsafe_allow_html=True)
47
 
 
 
48
  # Constants
49
  AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800
50
 
 
 
51
  # Set up DialoGPT model
52
  @st.cache_resource
53
  def load_model():
54
- tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
55
- model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
56
- return tokenizer, model
 
 
57
 
58
  tokenizer, model = load_model()
59
 
 
 
60
  # Advanced Sensor Classes
61
  class QuantumSensor:
62
- @staticmethod
63
- def measure(x, y, sensitivity):
64
- return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1)
 
 
65
 
66
  class NanoThermalSensor:
67
- @staticmethod
68
- def measure(base_temp, pressure, duration):
69
- return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001)
 
 
70
 
71
  class AdaptiveTextureSensor:
72
- textures = [
73
- "nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
74
- "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
75
- ]
76
-
77
- @staticmethod
78
- def measure(x, y):
79
- return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)]
 
 
80
 
81
  class EMFieldSensor:
82
- @staticmethod
83
- def measure(x, y, sensitivity):
84
- return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity
 
 
85
 
86
  class NeuralNetworkSimulator:
87
- @staticmethod
88
- def process(inputs):
89
- weights = np.random.rand(len(inputs))
90
- return np.dot(inputs, weights) / np.sum(weights)
 
 
91
 
92
  # Create more detailed sensation map for the avatar
93
  def create_sensation_map(width, height):
94
- sensation_map = np.zeros((height, width, 12)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural, proprioception, synesthesia
95
- for y in range(height):
96
- for x in range(width):
97
- base_sensitivities = np.random.rand(12) * 0.5 + 0.5
98
-
99
- # Enhance certain areas
100
- if 250 < x < 350 and 50 < y < 150: # Head
101
- base_sensitivities *= 1.5
102
- elif 275 < x < 325 and 80 < y < 120: # Eyes
103
- base_sensitivities[0] *= 2 # More sensitive to pain
104
- elif 290 < x < 310 and 100 < y < 120: # Nose
105
- base_sensitivities[4] *= 2 # More sensitive to texture
106
- elif 280 < x < 320 and 120 < y < 140: # Mouth
107
- base_sensitivities[1] *= 2 # More sensitive to pleasure
108
- elif 250 < x < 350 and 250 < y < 550: # Torso
109
- base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em
110
- elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms
111
- base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure
112
- elif 200 < x < 400 and 600 < y < 800: # Legs
113
- base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch
114
- elif (140 < x < 160 or 440 < x < 460) and 390 < y < 410: # Hands
115
- base_sensitivities *= 2 # Highly sensitive overall
116
- elif (220 < x < 240 or 360 < x < 380) and 770 < y < 790: # Feet
117
- base_sensitivities[6] *= 2 # Very ticklish
118
-
119
- sensation_map[y, x] = base_sensitivities
120
-
121
- return sensation_map
 
 
122
 
123
  avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)
124
 
125
- # Create 3D humanoid avatar
126
- def create_3d_avatar():
127
- # Head
128
- head_x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) * 20 + 290
129
- head_y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) * 40 + 50
130
- head_z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) * 20 + 120
131
-
132
- # Torso
133
- torso_x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) * 40 + 270
134
- torso_y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) * 150 + 250
135
- torso_z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) * 30 + 90
136
-
137
- # Arms
138
- arm_x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) * 20 + 200
139
- arm_y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) * 150 + 250
140
- arm_z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) * 20 + 90
141
-
142
- # Legs
143
- leg_x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) * 40 + 280
144
- leg_y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) * 200 + 600
145
- leg_z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) * 40 + 60
146
-
147
- # Combine all body parts
148
- x = np.concatenate([head_x, torso_x, arm_x, arm_x, leg_x, leg_x])
149
- y = np.concatenate([head_y, torso_y, arm_y, arm_y, leg_y, leg_y])
150
- z = np.concatenate([head_z, torso_z, arm_z, arm_z, leg_z, leg_z])
151
-
152
- return go.Mesh3d(x=x, y=y, z=z, color='cyan', opacity=0.5)
153
-
154
- # Enhanced Autonomy Class
155
- class EnhancedAutonomy:
156
- def __init__(self):
157
- self.mood = 0.5
158
- self.energy = 0.8
159
- self.curiosity = 0.7
160
- self.memory = []
161
-
162
- def update_state(self, sensory_input):
163
- self.mood = max(0, min(1, self.mood - sensory_input['pain'] * 0.1 + sensory_input['pleasure'] * 0.1))
164
- self.energy = max(0, min(1, self.energy - sensory_input['intensity'] * 0.05))
165
- if len(self.memory) == 0 or sensory_input not in self.memory:
166
- self.curiosity = min(1, self.curiosity + 0.1)
167
- else:
168
- self.curiosity = max(0, self.curiosity - 0.05)
169
- self.memory.append(sensory_input)
170
- if len(self.memory) > 10:
171
- self.memory.pop(0)
172
-
173
- def decide_action(self):
174
- if self.energy < 0.2:
175
- return "Rest to regain energy"
176
- elif self.curiosity > 0.8:
177
- return "Explore new sensations"
178
- elif self.mood < 0.3:
179
- return "Seek positive interactions"
180
- else:
181
- return "Continue current activity"
182
-
183
- # Function to save interactions
184
- def save_interaction(interaction_data):
185
- timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
186
- filename = f"interaction_{timestamp}.json"
187
- with open(filename, "w") as f:
188
- json.dump(interaction_data, f, indent=4)
189
- return filename
190
 
191
  # Streamlit app
192
  st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation")
193
 
 
 
194
  # Create two columns
195
  col1, col2 = st.columns([2, 1])
196
 
197
- # 3D Avatar display with touch interface
 
 
198
  with col1:
199
- st.subheader("3D Humanoid Avatar Interface")
200
-
201
- # Create 3D avatar
202
- avatar_3d = create_3d_avatar()
203
-
204
- # Add 3D controls
205
- rotation_x = st.slider("Rotate X", -180, 180, 0)
206
- rotation_y = st.slider("Rotate Y", -180, 180, 0)
207
- rotation_z = st.slider("Rotate Z", -180, 180, 0)
208
-
209
- # Create 3D plot
210
- fig = go.Figure(data=[avatar_3d])
211
- fig.update_layout(scene=dict(xaxis_title="X", yaxis_title="Y", zaxis_title="Z"))
212
- fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)))
213
- fig.update_layout(scene=dict(xaxis=dict(range=[-400, 400]),
214
- yaxis=dict(range=[-400, 400]),
215
- zaxis=dict(range=[-200, 200])))
216
-
217
- # Apply rotations
218
- fig.update_layout(scene=dict(camera=dict(eye=dict(x=np.cos(np.radians(rotation_y)) * np.cos(np.radians(rotation_x)),
219
- y=np.sin(np.radians(rotation_y)) * np.cos(np.radians(rotation_x)),
220
- z=np.sin(np.radians(rotation_x))))))
221
-
222
- st.plotly_chart(fig, use_container_width=True)
223
-
224
- # Use st_canvas for touch input
225
- canvas_result = st_canvas(
226
- fill_color="rgba(0, 255, 255, 0.3)",
227
- stroke_width=2,
228
- stroke_color="#00FFFF",
229
- background_image=Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0)),
230
- height=AVATAR_HEIGHT,
231
- width=AVATAR_WIDTH,
232
- drawing_mode="point",
233
- key="canvas",
234
- )
235
 
236
  # Touch controls and output
237
  with col2:
238
- st.subheader("Neural Interface Controls")
239
-
240
- # Touch duration
241
- touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
242
-
243
- # Touch pressure
244
- touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
245
-
246
- # Toggle quantum feature
247
- use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
248
-
249
- # Toggle synesthesia
250
- use_synesthesia = st.checkbox("Enable Synesthesia", value=False)
251
-
252
- # Initialize EnhancedAutonomy
253
- if 'autonomy' not in st.session_state:
254
- st.session_state.autonomy = EnhancedAutonomy()
255
-
256
- if canvas_result.json_data is not None:
257
- objects = canvas_result.json_data["objects"]
258
- if len(objects) > 0:
259
- last_touch = objects[-1]
260
- touch_x = last_touch["left"]
261
- touch_y = last_touch["top"]
262
- touch_z = 0 # Assuming the touch is on the surface of the avatar
263
-
264
- sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
265
- (
266
- pain, pleasure, pressure_sens, temp_sens, texture_sens,
267
- em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
268
- proprioception_sens, synesthesia_sens
269
- ) = sensation
270
-
271
- measured_pressure = QuantumSensor.measure(touch_x, touch_y, pressure_sens) * touch_pressure
272
- measured_temp = NanoThermalSensor.measure(37, touch_pressure, touch_duration)
273
- measured_texture = AdaptiveTextureSensor.measure(touch_x, touch_y)
274
- measured_em = EMFieldSensor.measure(touch_x, touch_y, em_sens)
275
-
276
- if use_quantum:
277
- quantum_state = QuantumSensor.measure(touch_x, touch_y, quantum_sens)
278
- else:
279
- quantum_state = "N/A"
280
-
281
- # Calculate overall sensations
282
- pain_level = pain * measured_pressure * touch_pressure
283
- pleasure_level = pleasure * (measured_temp - 37) / 10
284
- tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
285
- itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
286
-
287
- # Proprioception (sense of body position)
288
- proprioception = proprioception_sens * np.linalg.norm([touch_x - AVATAR_WIDTH/2, touch_y - AVATAR_HEIGHT/2, touch_z]) / (AVATAR_WIDTH/2)
289
-
290
- # Synesthesia (mixing of senses)
291
- if use_synesthesia:
292
- synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3
293
- else:
294
- synesthesia = "N/A"
295
-
296
- # Neural network simulation
297
- neural_inputs = [pain_level, pleasure_level, measured_pressure, measured_temp, measured_em, tickle_level, itch_level, proprioception]
298
- neural_response = NeuralNetworkSimulator.process(neural_inputs)
299
-
300
- # Create a futuristic data display
301
- data_display = f"""
302
- ```
303
- β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
304
- β”‚ Pressure : {measured_pressure:.2f} β”‚
305
- β”‚ Temperature : {measured_temp:.2f}Β°C β”‚
306
- β”‚ Texture : {measured_texture} β”‚
307
- β”‚ EM Field : {measured_em:.2f} ΞΌT β”‚
308
- β”‚ Quantum State: {quantum_state:.2f} β”‚
309
- β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
310
- β”‚ Pain Level : {pain_level:.2f} β”‚
311
- β”‚ Pleasure : {pleasure_level:.2f} β”‚
312
- β”‚ Tickle : {tickle_level:.2f} β”‚
313
- β”‚ Itch : {itch_level:.2f} β”‚
314
- β”‚ Proprioception: {proprioception:.2f} β”‚
315
- β”‚ Synesthesia : {synesthesia} β”‚
316
- β”‚ Neural Response: {neural_response:.2f} β”‚
317
- β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
318
- """
319
- st.code(data_display, language="")
320
-
321
- # Save interaction data
322
- if canvas_result.json_data is not None:
323
- objects = canvas_result.json_data["objects"]
324
- if len(objects) > 0:
325
- interaction_data = {
326
- "touch_x": touch_x,
327
- "touch_y": touch_y,
328
- "touch_z": touch_z,
329
- "touch_duration": touch_duration,
330
- "touch_pressure": touch_pressure,
331
- "measured_pressure": measured_pressure,
332
- "measured_temp": measured_temp,
333
- "measured_texture": measured_texture,
334
- "measured_em": measured_em,
335
- "quantum_state": quantum_state,
336
- "pain_level": pain_level,
337
- "pleasure_level": pleasure_level,
338
- "tickle_level": tickle_level,
339
- "itch_level": itch_level,
340
- "proprioception": proprioception,
341
- "synesthesia": synesthesia,
342
- "neural_response": neural_response
343
- }
344
- filename = save_interaction(interaction_data)
345
- st.write(f"Interaction data saved to: {filename}")
346
- else:
347
- st.write("No touch interaction detected.")
348
- else:
349
- st.write("No touch interaction detected.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import numpy as np
2
  import matplotlib.pyplot as plt
3
  from PIL import Image, ImageDraw, ImageFont
 
6
  import io
7
  import base64
8
  from streamlit_drawable_canvas import st_canvas
9
+
10
+
 
 
11
 
12
  # Set page config for a futuristic look
13
  st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide")
14
 
15
+
16
+
17
  # Custom CSS for a futuristic look
18
  st.markdown("""
19
  <style>
20
+ body {
21
+ color: #E0E0E0;
22
+ background-color: #0E1117;
23
+ }
24
+ .stApp {
25
+ background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%);
26
+ }
27
+ .stButton>button {
28
+ color: #00FFFF;
29
+ border-color: #00FFFF;
30
+ border-radius: 20px;
31
+ }
32
+ .stSlider>div>div>div>div {
33
+ background-color: #00FFFF;
34
+ }
35
+ .stTextArea, .stNumberInput, .stSelectbox {
36
+ background-color: #1A1F2C;
37
+ color: #00FFFF;
38
+ border-color: #00FFFF;
39
+ border-radius: 20px;
40
+ }
41
+ .stTextArea:focus, .stNumberInput:focus, .stSelectbox:focus {
42
+ box-shadow: 0 0 10px #00FFFF;
43
+ }
44
  </style>
45
  """, unsafe_allow_html=True)
46
 
47
+
48
+
49
  # Constants
50
  AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800
51
 
52
+
53
+
54
  # Set up DialoGPT model
55
  @st.cache_resource
56
  def load_model():
57
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
58
+ model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
59
+ return tokenizer, model
60
+
61
+
62
 
63
  tokenizer, model = load_model()
64
 
65
+
66
+
67
  # Advanced Sensor Classes
68
  class QuantumSensor:
69
+ @staticmethod
70
+ def measure(x, y, sensitivity):
71
+ return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1)
72
+
73
+
74
 
75
  class NanoThermalSensor:
76
+ @staticmethod
77
+ def measure(base_temp, pressure, duration):
78
+ return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001)
79
+
80
+
81
 
82
  class AdaptiveTextureSensor:
83
+ textures = [
84
+ "nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
85
+ "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
86
+ ]
87
+
88
+ @staticmethod
89
+ def measure(x, y):
90
+ return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)]
91
+
92
+
93
 
94
  class EMFieldSensor:
95
+ @staticmethod
96
+ def measure(x, y, sensitivity):
97
+ return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity
98
+
99
+
100
 
101
  class NeuralNetworkSimulator:
102
+ @staticmethod
103
+ def process(inputs):
104
+ weights = np.random.rand(len(inputs))
105
+ return np.dot(inputs, weights) / np.sum(weights)
106
+
107
+
108
 
109
  # Create more detailed sensation map for the avatar
110
  def create_sensation_map(width, height):
111
+ sensation_map = np.zeros((height, width, 12)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural, proprioception, synesthesia
112
+ for y in range(height):
113
+ for x in range(width):
114
+ base_sensitivities = np.random.rand(12) * 0.5 + 0.5
115
+
116
+ # Enhance certain areas
117
+ if 250 < x < 350 and 50 < y < 150: # Head
118
+ base_sensitivities *= 1.5
119
+ elif 275 < x < 325 and 80 < y < 120: # Eyes
120
+ base_sensitivities[0] *= 2 # More sensitive to pain
121
+ elif 290 < x < 310 and 100 < y < 120: # Nose
122
+ base_sensitivities[4] *= 2 # More sensitive to texture
123
+ elif 280 < x < 320 and 120 < y < 140: # Mouth
124
+ base_sensitivities[1] *= 2 # More sensitive to pleasure
125
+ elif 250 < x < 350 and 250 < y < 550: # Torso
126
+ base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em
127
+ elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms
128
+ base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure
129
+ elif 200 < x < 400 and 600 < y < 800: # Legs
130
+ base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch
131
+ elif (140 < x < 160 or 440 < x < 460) and 390 < y < 410: # Hands
132
+ base_sensitivities *= 2 # Highly sensitive overall
133
+ elif (220 < x < 240 or 360 < x < 380) and 770 < y < 790: # Feet
134
+ base_sensitivities[6] *= 2 # Very ticklish
135
+
136
+ sensation_map[y, x] = base_sensitivities
137
+
138
+ return sensation_map
139
+
140
+
141
 
142
  avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)
143
 
144
+
145
+
146
+ # Create futuristic human-like avatar
147
+ def create_avatar():
148
+ img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0))
149
+ draw = ImageDraw.Draw(img)
150
+
151
+ # Body
152
+ draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
153
+
154
+ # Head
155
+ draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
156
+
157
+ # Eyes
158
+ draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
159
+ draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
160
+
161
+ # Nose
162
+ draw.polygon([(300, 90), (290, 110), (310, 110)], fill=(0, 255, 255, 150))
163
+
164
+ # Mouth
165
+ draw.arc([280, 110, 320, 130], 0, 180, fill=(0, 255, 255, 200), width=2)
166
+
167
+ # Arms
168
+ draw.line([(200, 250), (150, 400)], fill=(0, 255, 255, 200), width=5)
169
+ draw.line([(400, 250), (450, 400)], fill=(0, 255, 255, 200), width=5)
170
+
171
+ # Hands
172
+ draw.ellipse([140, 390, 160, 410], fill=(0, 255, 255, 150))
173
+ draw.ellipse([440, 390, 460, 410], fill=(0, 255, 255, 150))
174
+
175
+ # Fingers
176
+ for i in range(5):
177
+ draw.line([(150 + i*5, 400), (145 + i*5, 420)], fill=(0, 255, 255, 200), width=2)
178
+ draw.line([(450 - i*5, 400), (455 - i*5, 420)], fill=(0, 255, 255, 200), width=2)
179
+
180
+ # Legs
181
+ draw.line([(250, 600), (230, 780)], fill=(0, 255, 255, 200), width=5)
182
+ draw.line([(350, 600), (370, 780)], fill=(0, 255, 255, 200), width=5)
183
+
184
+ # Feet
185
+ draw.ellipse([220, 770, 240, 790], fill=(0, 255, 255, 150))
186
+ draw.ellipse([360, 770, 380, 790], fill=(0, 255, 255, 150))
187
+
188
+ # Toes
189
+ for i in range(5):
190
+ draw.line([(225 + i*3, 790), (223 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
191
+ draw.line([(365 + i*3, 790), (363 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
192
+
193
+ # Neural network lines
194
+ for _ in range(100):
195
+ start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
196
+ end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
197
+ draw.line([start, end], fill=(0, 255, 255, 50), width=1)
198
+
199
+ return img
200
+
201
+
202
+
203
+ avatar_image = create_avatar()
204
+
205
+
 
 
 
206
 
207
  # Streamlit app
208
  st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation")
209
 
210
+
211
+
212
  # Create two columns
213
  col1, col2 = st.columns([2, 1])
214
 
215
+
216
+
217
+ # Avatar display with touch interface
218
  with col1:
219
+ st.subheader("Humanoid Avatar Interface")
220
+
221
+ # Use st_canvas for touch input
222
+ canvas_result = st_canvas(
223
+ fill_color="rgba(0, 255, 255, 0.3)",
224
+ stroke_width=2,
225
+ stroke_color="#00FFFF",
226
+ background_image=avatar_image,
227
+ height=AVATAR_HEIGHT,
228
+ width=AVATAR_WIDTH,
229
+ drawing_mode="point",
230
+ key="canvas",
231
+ )
232
+
233
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
 
235
  # Touch controls and output
236
  with col2:
237
+ st.subheader("Neural Interface Controls")
238
+
239
+ # Touch duration
240
+ touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
241
+
242
+ # Touch pressure
243
+ touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
244
+
245
+ # Toggle quantum feature
246
+ use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
247
+
248
+ # Toggle synesthesia
249
+ use_synesthesia = st.checkbox("Enable Synesthesia", value=False)
250
+
251
+ if canvas_result.json_data is not None:
252
+ objects = canvas_result.json_data["objects"]
253
+ if len(objects) > 0:
254
+ last_touch = objects[-1]
255
+ touch_x, touch_y = last_touch["left"], last_touch["top"]
256
+
257
+ sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
258
+ (
259
+ pain, pleasure, pressure_sens, temp_sens, texture_sens,
260
+ em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
261
+ proprioception_sens, synesthesia_sens
262
+ ) = sensation
263
+
264
+
265
+
266
+ measured_pressure = QuantumSensor.measure(touch_x, touch_y, pressure_sens) * touch_pressure
267
+ measured_temp = NanoThermalSensor.measure(37, touch_pressure, touch_duration)
268
+ measured_texture = AdaptiveTextureSensor.measure(touch_x, touch_y)
269
+ measured_em = EMFieldSensor.measure(touch_x, touch_y, em_sens)
270
+
271
+ if use_quantum:
272
+ quantum_state = QuantumSensor.measure(touch_x, touch_y, quantum_sens)
273
+ else:
274
+ quantum_state = "N/A"
275
+
276
+
277
+
278
+ # Calculate overall sensations
279
+ pain_level = pain * measured_pressure * touch_pressure
280
+ pleasure_level = pleasure * (measured_temp - 37) / 10
281
+ tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
282
+ itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
283
+
284
+ # Proprioception (sense of body position)
285
+ proprioception = proprioception_sens * np.linalg.norm([touch_x - AVATAR_WIDTH/2, touch_y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
286
+
287
+ # Synesthesia (mixing of senses)
288
+ if use_synesthesia:
289
+ synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3
290
+ else:
291
+ synesthesia = "N/A"
292
+
293
+ # Neural network simulation
294
+ neural_inputs = [pain_level, pleasure_level, measured_pressure, measured_temp, measured_em, tickle_level, itch_level, proprioception]
295
+ neural_response = NeuralNetworkSimulator.process(neural_inputs)
296
+
297
+
298
+
299
+ st.write("### Sensory Data Analysis")
300
+ st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
301
+ st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}")
302
+
303
+ # Create a futuristic data display
304
+ data_display = f"""
305
+ ```
306
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
307
+ β”‚ Pressure : {measured_pressure:.2f} β”‚
308
+ β”‚ Temperature : {measured_temp:.2f}Β°C β”‚
309
+ β”‚ Texture : {measured_texture} β”‚
310
+ β”‚ EM Field : {measured_em:.2f} ΞΌT β”‚
311
+ β”‚ Quantum State: {quantum_state:.2f} β”‚
312
+ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
313
+ β”‚ Pain Level : {pain_level:.2f} β”‚
314
+ β”‚ Pleasure : {pleasure_level:.2f} β”‚
315
+ β”‚ Tickle : {tickle_level:.2f} β”‚
316
+ β”‚ Itch : {itch_level:.2f} β”‚
317
+ β”‚ Proprioception: {proprioception:.2f} β”‚
318
+ β”‚ Synesthesia : {synesthesia} β”‚
319
+ β”‚ Neural Response: {neural_response:.2f} β”‚
320
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
321
+ ```
322
+ """
323
+ st.code(data_display, language="")
324
+
325
+
326
+
327
+ # Generate description
328
+ prompt = f"""Human: Analyze the sensory input for a hyper-advanced AI humanoid:
329
+ Location: ({touch_x:.1f}, {touch_y:.1f})
330
+ Duration: {touch_duration:.1f}s, Intensity: {touch_pressure:.2f}
331
+ Pressure: {measured_pressure:.2f}
332
+ Temperature: {measured_temp:.2f}Β°C
333
+ Texture: {measured_texture}
334
+ EM Field: {measured_em:.2f} ΞΌT
335
+ Quantum State: {quantum_state}
336
+ Resulting in:
337
+ Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f}
338
+ Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f}
339
+ Proprioception: {proprioception:.2f}
340
+ Synesthesia: {synesthesia}
341
+ Neural Response: {neural_response:.2f}
342
+ Provide a detailed, scientific analysis of the AI's experience.
343
+ AI:"""
344
+
345
+
346
+
347
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
348
+
349
+
350
+
351
+ output = model.generate(
352
+ input_ids,
353
+ max_length=400,
354
+ num_return_sequences=1,
355
+ no_repeat_ngram_size=2,
356
+ top_k=50,
357
+ top_p=0.95,
358
+ temperature=0.7
359
+ )
360
+
361
+
362
+
363
+ response = tokenizer.decode(output[0], skip_special_tokens=True).split("AI:")[-1].strip()
364
+
365
+
366
+
367
+ st.write("### AI's Sensory Analysis:")
368
+ st.write(response)
369
+
370
+
371
+
372
+ # Visualize sensation map
373
+ st.subheader("Quantum Neuro-Sensory Map")
374
+ fig, axs = plt.subplots(3, 4, figsize=(20, 15))
375
+ titles = [
376
+ 'Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture',
377
+ 'EM Field', 'Tickle', 'Itch', 'Quantum', 'Neural',
378
+ 'Proprioception', 'Synesthesia'
379
+ ]
380
+
381
+
382
+
383
+ for i, title in enumerate(titles):
384
+ ax = axs[i // 4, i % 4]
385
+ im = ax.imshow(avatar_sensation_map[:, :, i], cmap='plasma')
386
+ ax.set_title(title)
387
+ fig.colorbar(im, ax=ax)
388
+
389
+
390
+
391
+ plt.tight_layout()
392
+ st.pyplot(fig)
393
+
394
+
395
+
396
+ st.write("The quantum neuro-sensory map illustrates the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.")
397
+
398
+
399
+
400
+ # Add information about the AI's advanced capabilities
401
+ st.subheader("NeuraSense AI: Cutting-Edge Sensory Capabilities")
402
+ st.write("""
403
+ This hyper-advanced AI humanoid incorporates revolutionary sensory technology:
404
+ 1. Quantum-Enhanced Pressure Sensors: Utilize quantum tunneling effects for unparalleled sensitivity.
405
+ 2. Nano-scale Thermal Detectors: Capable of detecting temperature variations to 0.001Β°C.
406
+ 3. Adaptive Texture Analysis: Employs machine learning to continually refine texture perception.
407
+ 4. Electromagnetic Field Sensors: Can detect and analyze complex EM patterns in the environment.
408
+ 5. Quantum State Detector: Interprets quantum phenomena, adding a new dimension to sensory input.
409
+ 6. Neural Network Integration: Simulates complex interplay of sensations, creating emergent experiences.
410
+ 7. Proprioception Simulation: Accurately models the AI's sense of body position and movement.
411
+ 8. Synesthesia Emulation: Allows for cross-modal sensory experiences, mixing different sensory inputs.
412
+ 9. Tickle and Itch Simulation: Replicates these unique sensations with quantum-level precision.
413
+ 10. Adaptive Pain and Pleasure Modeling: Simulates complex emotional and physical responses to stimuli.
414
+
415
+
416
+ The AI's responses are generated using an advanced language model, providing detailed scientific analysis of its sensory experiences. This simulation showcases the potential for creating incredibly sophisticated and responsive artificial sensory systems that go beyond human capabilities.
417
+ """)
418
+
419
+
420
+
421
+ # Interactive sensory exploration
422
+ st.subheader("Interactive Sensory Exploration")
423
+ exploration_type = st.selectbox("Choose a sensory exploration:",
424
+ ["Quantum Field Fluctuations", "Synesthesia Experience", "Proprioceptive Mapping"])
425
+
426
+
427
+
428
+ if exploration_type == "Quantum Field Fluctuations":
429
+ st.write("Observe how quantum fields fluctuate across the AI's body.")
430
+ quantum_field = np.array([[QuantumSensor.measure(x, y, 1) for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
431
+
432
+ # Save the plot to an in-memory buffer
433
+ buf = io.BytesIO()
434
+ plt.figure(figsize=(8, 6))
435
+ plt.imshow(quantum_field, cmap='viridis')
436
+ plt.savefig(buf, format='png')
437
+
438
+ # Create a PIL Image object from the buffer
439
+ quantum_image = Image.open(buf)
440
+
441
+ # Display the image using st.image()
442
+ st.image(quantum_image, use_column_width=True)
443
+
444
+
445
+
446
+ elif exploration_type == "Synesthesia Experience":
447
+ st.write("Experience how the AI might perceive colors as sounds or textures as tastes.")
448
+ synesthesia_map = np.random.rand(AVATAR_HEIGHT, AVATAR_WIDTH, 3)
449
+ st.image(Image.fromarray((synesthesia_map * 255).astype(np.uint8)), use_column_width=True)
450
+
451
+
452
+
453
+ elif exploration_type == "Proprioceptive Mapping":
454
+ st.write("Explore the AI's sense of body position and movement.")
455
+ proprioceptive_map = np.array([[np.linalg.norm([x - AVATAR_WIDTH/2, y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
456
+ for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
457
+
458
+ # Save the plot to an in-memory buffer
459
+ buf = io.BytesIO()
460
+ plt.figure(figsize=(8, 6))
461
+ plt.imshow(proprioceptive_map, cmap='coolwarm')
462
+ plt.savefig(buf, format='png')
463
+
464
+ # Create a PIL Image object from the buffer
465
+ proprioceptive_image = Image.open(buf)
466
+
467
+ # Display the image using st.image()
468
+ st.image(proprioceptive_image, use_column_width=True)
469
+ # Footer
470
+ st.write("---")
471
+ st.write("NeuraSense AI: Quantum-Enhanced Sensory Simulation v4.0")
472
+ st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.")
473
+