Sephfox commited on
Commit
a8b2fd4
β€’
1 Parent(s): b91d93b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +173 -149
app.py CHANGED
@@ -5,9 +5,35 @@ from PIL import Image, ImageDraw, ImageFont
5
  import time
6
  from transformers import AutoModelForCausalLM, AutoTokenizer
7
  import io
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  # Constants
10
- AVATAR_WIDTH, AVATAR_HEIGHT = 400, 800
11
 
12
  # Set up DialoGPT model
13
  @st.cache_resource
@@ -19,214 +45,212 @@ def load_model():
19
  tokenizer, model = load_model()
20
 
21
  # Simulated Sensor Classes
22
- class Sensors:
23
  @staticmethod
24
- def measure_pressure(base_sensitivity, duration):
25
- return base_sensitivity * (1 - np.exp(-duration / 2))
26
 
27
  @staticmethod
28
- def measure_temperature(base_temp, duration):
29
- return base_temp + 5 * (1 - np.exp(-duration / 3))
30
 
31
  @staticmethod
32
  def measure_texture(x, y):
33
- textures = ["smooth", "rough", "bumpy", "silky", "grainy", "soft", "hard", "moist", "dry", "fuzzy"]
34
  return textures[hash((x, y)) % len(textures)]
35
 
36
  @staticmethod
37
- def measure_em_field(x, y):
38
- return np.sin(x/50) * np.cos(y/50) * 10
 
 
 
 
 
39
 
40
  # Create more detailed sensation map for the avatar
41
  def create_sensation_map(width, height):
42
- sensation_map = np.zeros((height, width, 8)) # pain, pleasure, pressure, temp, texture, em, tickle, itch
43
  for y in range(height):
44
  for x in range(width):
45
- # Head
46
- if 150 < x < 250 and 50 < y < 200:
47
- sensation_map[y, x] = [0.7, 0.5, 0.8, 0.6, 0.9, 0.9, 0.3, 0.4]
48
- # Face
49
- elif 160 < x < 240 and 80 < y < 180:
50
- sensation_map[y, x] = [0.9, 0.7, 1.0, 0.8, 1.0, 1.0, 0.5, 0.6]
51
- # Neck
52
- elif 175 < x < 225 and 200 < y < 250:
53
- sensation_map[y, x] = [0.8, 0.6, 0.9, 0.7, 0.8, 0.8, 0.7, 0.5]
54
- # Torso
55
- elif 150 < x < 250 and 250 < y < 500:
56
- sensation_map[y, x] = [0.5, 0.6, 0.7, 0.8, 0.6, 0.7, 0.5, 0.3]
57
- # Arms
58
- elif (100 < x < 150 or 250 < x < 300) and 250 < y < 500:
59
- sensation_map[y, x] = [0.6, 0.5, 0.9, 0.7, 0.8, 0.6, 0.7, 0.4]
60
- # Hands
61
- elif (75 < x < 125 or 275 < x < 325) and 450 < y < 525:
62
- sensation_map[y, x] = [0.8, 0.7, 1.0, 0.9, 1.0, 0.8, 0.9, 0.7]
63
- # Legs
64
- elif 150 < x < 250 and 500 < y < 700:
65
- sensation_map[y, x] = [0.7, 0.4, 0.8, 0.6, 0.7, 0.5, 0.6, 0.5]
66
- # Feet
67
- elif 150 < x < 250 and 700 < y < 800:
68
- sensation_map[y, x] = [0.9, 0.6, 1.0, 0.8, 0.9, 0.7, 1.0, 0.8]
69
- else:
70
- sensation_map[y, x] = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
71
 
72
  return sensation_map
73
 
74
  avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)
75
 
76
- # Create more detailed human-like avatar
77
  def create_avatar():
78
- img = Image.new('RGB', (AVATAR_WIDTH, AVATAR_HEIGHT), color='white')
79
  draw = ImageDraw.Draw(img)
80
 
81
- # Head
82
- draw.ellipse([150, 50, 250, 200], fill='beige', outline='black')
83
- # Hair
84
- draw.polygon([(150, 120), (200, 30), (250, 120)], fill='brown')
85
- # Eyes
86
- draw.ellipse([175, 100, 195, 120], fill='white', outline='black')
87
- draw.ellipse([205, 100, 225, 120], fill='white', outline='black')
88
- draw.ellipse([182, 107, 188, 113], fill='blue')
89
- draw.ellipse([212, 107, 218, 113], fill='blue')
90
- # Nose
91
- draw.polygon([(200, 130), (190, 150), (210, 150)], fill='beige', outline='black')
92
- # Mouth
93
- draw.arc([185, 160, 215, 180], start=0, end=180, fill='red', width=2)
94
-
95
- # Neck
96
- draw.rectangle([175, 200, 225, 250], fill='beige', outline='black')
97
-
98
- # Body
99
- draw.rectangle([150, 250, 250, 500], fill='lightblue', outline='black')
100
-
101
- # Arms
102
- draw.rectangle([100, 250, 150, 500], fill='lightblue', outline='black')
103
- draw.rectangle([250, 250, 300, 500], fill='lightblue', outline='black')
104
 
105
- # Hands
106
- draw.ellipse([75, 450, 125, 525], fill='beige', outline='black')
107
- draw.ellipse([275, 450, 325, 525], fill='beige', outline='black')
108
 
109
- # Legs
110
- draw.rectangle([150, 500, 200, 700], fill='navy', outline='black')
111
- draw.rectangle([200, 500, 250, 700], fill='navy', outline='black')
112
 
113
- # Feet
114
- draw.ellipse([140, 700, 210, 800], fill='beige', outline='black')
115
- draw.ellipse([190, 700, 260, 800], fill='beige', outline='black')
 
 
116
 
117
  return img
118
 
119
  avatar_image = create_avatar()
120
 
121
  # Streamlit app
122
- st.title("Advanced Humanoid Techno-Sensory Simulation")
123
 
124
  # Create two columns
125
  col1, col2 = st.columns([2, 1])
126
 
127
- # Avatar display with crosshair
128
  with col1:
129
- st.subheader("Humanoid Avatar")
130
-
131
- # Touch input
132
- touch_x = st.slider("Touch X coordinate", 0, AVATAR_WIDTH, AVATAR_WIDTH // 2)
133
- touch_y = st.slider("Touch Y coordinate", 0, AVATAR_HEIGHT, AVATAR_HEIGHT // 2)
134
-
135
- # Add crosshair to avatar image
136
- avatar_with_crosshair = avatar_image.copy()
137
- draw = ImageDraw.Draw(avatar_with_crosshair)
138
- draw.line((touch_x - 10, touch_y, touch_x + 10, touch_y), fill="red", width=2)
139
- draw.line((touch_x, touch_y - 10, touch_x, touch_y + 10), fill="red", width=2)
140
 
141
- # Display avatar with crosshair
142
- st.image(avatar_with_crosshair, use_column_width=True)
 
 
 
 
 
 
 
 
 
143
 
144
  # Touch controls and output
145
  with col2:
146
- st.subheader("Touch Controls")
147
 
148
  # Touch duration
149
- touch_duration = st.slider("Touch duration (seconds)", 0.1, 5.0, 1.0, 0.1)
150
 
151
  # Touch pressure
152
- touch_pressure = st.slider("Touch pressure", 0.1, 2.0, 1.0, 0.1)
153
 
154
- if st.button("Apply Touch"):
155
- sensation = avatar_sensation_map[touch_y, touch_x]
156
- pain, pleasure, pressure_sens, temp_sens, texture_sens, em_sens, tickle_sens, itch_sens = sensation
157
-
158
- measured_pressure = Sensors.measure_pressure(pressure_sens * touch_pressure, touch_duration)
159
- measured_temp = Sensors.measure_temperature(37, touch_duration)
160
- measured_texture = Sensors.measure_texture(touch_x, touch_y)
161
- measured_em = Sensors.measure_em_field(touch_x, touch_y) * em_sens
162
-
163
- # Calculate overall sensation
164
- pain_level = pain * measured_pressure
165
- pleasure_level = pleasure * (measured_temp - 37) / 5
166
- tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
167
- itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
168
-
169
- st.write(f"Touch applied at ({touch_x}, {touch_y}) for {touch_duration:.1f} seconds")
170
- st.write(f"Pressure: {measured_pressure:.2f}")
171
- st.write(f"Temperature: {measured_temp:.2f}Β°C")
172
- st.write(f"Texture: {measured_texture}")
173
- st.write(f"Electromagnetic field: {measured_em:.2f}")
174
- st.write(f"Pain level: {pain_level:.2f}")
175
- st.write(f"Pleasure level: {pleasure_level:.2f}")
176
- st.write(f"Tickle level: {tickle_level:.2f}")
177
- st.write(f"Itch level: {itch_level:.2f}")
178
-
179
- # Generate description
180
- prompt = f"""Human: Describe the sensation when touched at ({touch_x}, {touch_y}) for {touch_duration:.1f} seconds with these measurements:
181
- Pressure: {measured_pressure:.2f}
182
- Temperature: {measured_temp:.2f}Β°C
183
- Texture: {measured_texture}
184
- Electromagnetic field: {measured_em:.2f}
185
- Resulting in:
186
- Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f}, Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f}
187
- Avatar:"""
188
-
189
- input_ids = tokenizer.encode(prompt, return_tensors="pt")
190
- output = model.generate(input_ids, max_length=200, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7)
191
-
192
- response = tokenizer.decode(output[0], skip_special_tokens=True).split("Avatar: ")[-1].strip()
193
-
194
- st.write("Avatar's response:")
195
- st.write(response)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
  # Visualize sensation map
198
- st.subheader("Sensation Map Visualization")
199
- fig, axs = plt.subplots(2, 4, figsize=(20, 10))
200
- titles = ['Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture', 'EM Field', 'Tickle', 'Itch']
201
 
202
  for i, title in enumerate(titles):
203
- ax = axs[i // 4, i % 4]
204
- im = ax.imshow(avatar_sensation_map[:, :, i], cmap='viridis')
205
  ax.set_title(title)
206
  fig.colorbar(im, ax=ax)
207
 
208
  plt.tight_layout()
209
  st.pyplot(fig)
210
 
211
- st.write("The sensation map shows the sensitivity of different body parts to various stimuli. Brighter colors indicate higher sensitivity.")
212
 
213
- # Add some context about the avatar's sensory capabilities
214
- st.subheader("Avatar Sensory Capabilities")
215
  st.write("""
216
- This advanced humanoid avatar is equipped with cutting-edge sensory technology:
217
 
218
- 1. Pressure Sensors: Highly sensitive to touch, with increased sensitivity in hands, feet, and face.
219
- 2. Temperature Sensors: Can detect slight changes in temperature, simulating human thermal perception.
220
- 3. Texture Analysis: Capable of distinguishing between various textures, from smooth to rough, soft to hard, and more.
221
- 4. Electromagnetic Field Detection: Mimics the subtle EM sensitivity some humans report.
222
- 5. Pain and Pleasure Processing: Simulates the complex interplay of pain and pleasure responses.
223
- 6. Tickle Sensation: Replicates the unique tickle response, which can be pleasurable or uncomfortable.
224
- 7. Itch Simulation: Reproduces the sensation of itching, which can be triggered by light touch or prolonged contact.
225
 
226
- The avatar's responses are generated using an advanced language model, attempting to describe the sensations in human-like terms. This simulation demonstrates the potential for creating highly responsive and realistic artificial sensory systems.
227
  """)
228
 
229
  # Footer
230
  st.write("---")
231
- st.write("Advanced Humanoid Techno-Sensory Simulation v2.0")
232
- st.write("Disclaimer: This is a simulation and does not represent actual human sensory experiences.")
 
5
  import time
6
  from transformers import AutoModelForCausalLM, AutoTokenizer
7
  import io
8
+ import base64
9
+ from streamlit_drawable_canvas import st_canvas
10
+
11
+ # Set page config for a futuristic look
12
+ st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide")
13
+
14
+ # Custom CSS for a futuristic look
15
+ st.markdown("""
16
+ <style>
17
+ body {
18
+ color: #E0E0E0;
19
+ background-color: #0E1117;
20
+ }
21
+ .stApp {
22
+ background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%);
23
+ }
24
+ .stButton>button {
25
+ color: #00FFFF;
26
+ border-color: #00FFFF;
27
+ border-radius: 20px;
28
+ }
29
+ .stSlider>div>div>div>div {
30
+ background-color: #00FFFF;
31
+ }
32
+ </style>
33
+ """, unsafe_allow_html=True)
34
 
35
  # Constants
36
+ AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800
37
 
38
  # Set up DialoGPT model
39
  @st.cache_resource
 
45
  tokenizer, model = load_model()
46
 
47
  # Simulated Sensor Classes
48
+ class AdvancedSensors:
49
  @staticmethod
50
+ def measure_pressure(base_sensitivity, pressure, duration):
51
+ return base_sensitivity * pressure * (1 - np.exp(-duration / 2))
52
 
53
  @staticmethod
54
+ def measure_temperature(base_temp, pressure, duration):
55
+ return base_temp + 10 * pressure * (1 - np.exp(-duration / 3))
56
 
57
  @staticmethod
58
  def measure_texture(x, y):
59
+ textures = ["nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky", "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"]
60
  return textures[hash((x, y)) % len(textures)]
61
 
62
  @staticmethod
63
+ def measure_em_field(x, y, sensitivity):
64
+ return (np.sin(x/30) * np.cos(y/30) + np.random.normal(0, 0.1)) * 10 * sensitivity
65
+
66
+ @staticmethod
67
+ def measure_quantum_state(x, y):
68
+ states = ["superposition", "entangled", "decoherent", "quantum tunneling", "quantum oscillation"]
69
+ return states[hash((x, y)) % len(states)]
70
 
71
  # Create more detailed sensation map for the avatar
72
  def create_sensation_map(width, height):
73
+ sensation_map = np.zeros((height, width, 10)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural
74
  for y in range(height):
75
  for x in range(width):
76
+ # Base sensitivities
77
+ base_sensitivities = np.random.rand(10) * 0.5 + 0.5
78
+
79
+ # Enhance certain areas
80
+ if 200 < x < 400 and 100 < y < 200: # Head
81
+ base_sensitivities *= 1.5
82
+ elif 250 < x < 350 and 250 < y < 550: # Torso
83
+ base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em
84
+ elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms
85
+ base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure
86
+ elif 200 < x < 400 and 600 < y < 800: # Legs
87
+ base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch
88
+
89
+ sensation_map[y, x] = base_sensitivities
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
  return sensation_map
92
 
93
  avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)
94
 
95
+ # Create futuristic human-like avatar
96
  def create_avatar():
97
+ img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0,0,0,0))
98
  draw = ImageDraw.Draw(img)
99
 
100
+ # Body outline
101
+ draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
+ # Head
104
+ draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
 
105
 
106
+ # Eyes
107
+ draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
108
+ draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
109
 
110
+ # Neural network lines
111
+ for _ in range(50):
112
+ start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
113
+ end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
114
+ draw.line([start, end], fill=(0, 255, 255, 50), width=1)
115
 
116
  return img
117
 
118
  avatar_image = create_avatar()
119
 
120
  # Streamlit app
121
+ st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation")
122
 
123
  # Create two columns
124
  col1, col2 = st.columns([2, 1])
125
 
126
+ # Avatar display with touch interface
127
  with col1:
128
+ st.subheader("Humanoid Avatar Interface")
 
 
 
 
 
 
 
 
 
 
129
 
130
+ # Use st_canvas for touch input
131
+ canvas_result = st_canvas(
132
+ fill_color="rgba(0, 255, 255, 0.3)",
133
+ stroke_width=2,
134
+ stroke_color="#00FFFF",
135
+ background_image=avatar_image,
136
+ height=AVATAR_HEIGHT,
137
+ width=AVATAR_WIDTH,
138
+ drawing_mode="point",
139
+ key="canvas",
140
+ )
141
 
142
  # Touch controls and output
143
  with col2:
144
+ st.subheader("Neural Interface Controls")
145
 
146
  # Touch duration
147
+ touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
148
 
149
  # Touch pressure
150
+ touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
151
 
152
+ if canvas_result.json_data is not None:
153
+ objects = canvas_result.json_data["objects"]
154
+ if len(objects) > 0:
155
+ last_touch = objects[-1]
156
+ touch_x, touch_y = last_touch["left"], last_touch["top"]
157
+
158
+ sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
159
+ pain, pleasure, pressure_sens, temp_sens, texture_sens, em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens = sensation
160
+
161
+ measured_pressure = AdvancedSensors.measure_pressure(pressure_sens, touch_pressure, touch_duration)
162
+ measured_temp = AdvancedSensors.measure_temperature(37, touch_pressure, touch_duration)
163
+ measured_texture = AdvancedSensors.measure_texture(touch_x, touch_y)
164
+ measured_em = AdvancedSensors.measure_em_field(touch_x, touch_y, em_sens)
165
+ quantum_state = AdvancedSensors.measure_quantum_state(touch_x, touch_y)
166
+
167
+ # Calculate overall sensations
168
+ pain_level = pain * measured_pressure * touch_pressure
169
+ pleasure_level = pleasure * (measured_temp - 37) / 10
170
+ tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
171
+ itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
172
+ neural_response = neural_sens * (measured_pressure + measured_temp - 37) / 10
173
+
174
+ st.write("### Sensory Data Analysis")
175
+ st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
176
+ st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}")
177
+
178
+ # Create a futuristic data display
179
+ data_display = f"""
180
+ ```
181
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
182
+ β”‚ Pressure : {measured_pressure:.2f} β”‚
183
+ β”‚ Temperature : {measured_temp:.2f}Β°C β”‚
184
+ β”‚ Texture : {measured_texture} β”‚
185
+ β”‚ EM Field : {measured_em:.2f} ΞΌT β”‚
186
+ β”‚ Quantum State: {quantum_state} β”‚
187
+ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
188
+ β”‚ Pain Level : {pain_level:.2f} β”‚
189
+ β”‚ Pleasure : {pleasure_level:.2f} β”‚
190
+ β”‚ Tickle : {tickle_level:.2f} β”‚
191
+ β”‚ Itch : {itch_level:.2f} β”‚
192
+ β”‚ Neural Response: {neural_response:.2f} β”‚
193
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
194
+ """
195
+ st.code(data_display, language="")
196
+
197
+ # Generate description
198
+ prompt = f"""Human: Analyze the sensory input for a hyper-advanced AI humanoid:
199
+ Location: ({touch_x:.1f}, {touch_y:.1f})
200
+ Duration: {touch_duration:.1f}s, Intensity: {touch_pressure:.2f}
201
+ Pressure: {measured_pressure:.2f}
202
+ Temperature: {measured_temp:.2f}Β°C
203
+ Texture: {measured_texture}
204
+ EM Field: {measured_em:.2f} ΞΌT
205
+ Quantum State: {quantum_state}
206
+ Resulting in:
207
+ Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f}
208
+ Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f}
209
+ Neural Response: {neural_response:.2f}
210
+ Provide a detailed, scientific analysis of the AI's experience.
211
+ AI:"""
212
+
213
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
214
+ output = model.generate(input_ids, max_length=300, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7)
215
+
216
+ response = tokenizer.decode(output[0], skip_special_tokens=True).split("AI:")[-1].strip()
217
+
218
+ st.write("### AI's Sensory Analysis:")
219
+ st.write(response)
220
 
221
  # Visualize sensation map
222
+ st.subheader("Quantum Neuro-Sensory Map")
223
+ fig, axs = plt.subplots(2, 5, figsize=(20, 8))
224
+ titles = ['Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture', 'EM Field', 'Tickle', 'Itch', 'Quantum', 'Neural']
225
 
226
  for i, title in enumerate(titles):
227
+ ax = axs[i // 5, i % 5]
228
+ im = ax.imshow(avatar_sensation_map[:, :, i], cmap='plasma')
229
  ax.set_title(title)
230
  fig.colorbar(im, ax=ax)
231
 
232
  plt.tight_layout()
233
  st.pyplot(fig)
234
 
235
+ st.write("The quantum neuro-sensory map illustrates the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.")
236
 
237
+ # Add information about the AI's advanced capabilities
238
+ st.subheader("NeuraSense AI: Cutting-Edge Sensory Capabilities")
239
  st.write("""
240
+ This hyper-advanced AI humanoid incorporates revolutionary sensory technology:
241
 
242
+ 1. Quantum-Enhanced Pressure Sensors: Utilize quantum tunneling effects for unparalleled sensitivity.
243
+ 2. Nano-scale Thermal Detectors: Capable of detecting temperature variations to 0.001Β°C.
244
+ 3. Adaptive Texture Analysis: Employs machine learning to continually refine texture perception.
245
+ 4. Electromagnetic Field Sensors: Can detect and analyze complex EM patterns in the environment.
246
+ 5. Quantum State Detector: Interprets quantum phenomena, adding a new dimension to sensory input.
247
+ 6. Neural Network Integration: Simulates complex interplay of sensations, creating emergent experiences.
248
+ 7. Tickle and Itch Simulation: Replicates these unique sensations with quantum-level precision.
249
 
250
+ The AI's responses are generated using an advanced language model, providing detailed scientific analysis of its sensory experiences. This simulation showcases the potential for creating incredibly sophisticated and responsive artificial sensory systems that go beyond human capabilities.
251
  """)
252
 
253
  # Footer
254
  st.write("---")
255
+ st.write("NeuraSense AI: Quantum-Enhanced Sensory Simulation v3.0")
256
+ st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.")