Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -414,7 +414,7 @@ mp_pose = mp.solutions.pose
|
|
414 |
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.5)
|
415 |
|
416 |
def detect_humanoid(image_path):
|
417 |
-
image = imread(image_path)
|
418 |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
419 |
results = pose.process(image_rgb)
|
420 |
if results.pose_landmarks:
|
@@ -429,7 +429,9 @@ def detect_humanoid(image_path):
|
|
429 |
return []
|
430 |
|
431 |
def apply_touch_points(image_path, keypoints):
|
432 |
-
image = imread(image_path)
|
|
|
|
|
433 |
draw = ImageDraw.Draw(image)
|
434 |
for point in keypoints:
|
435 |
draw.ellipse([point[0]-5, point[1]-5, point[0]+5, point[1]+5], fill='red')
|
@@ -462,10 +464,6 @@ def create_sensation_map(width, height, keypoints):
|
|
462 |
|
463 |
return sensation_map
|
464 |
|
465 |
-
def create_heatmap(sensation_map, sensation_type):
|
466 |
-
plt.figure(figsize=(10, 15))
|
467 |
-
sns.heatmap(sensation_map[:, :, sensation_type], cmap='viridis')
|
468 |
-
|
469 |
def create_heatmap(sensation_map, sensation_type):
|
470 |
plt.figure(figsize=(10, 15))
|
471 |
sns.heatmap(sensation_map[:, :, sensation_type], cmap='viridis')
|
@@ -494,34 +492,27 @@ def generate_ai_response(keypoints, sensation_map):
|
|
494 |
|
495 |
return response
|
496 |
|
497 |
-
# Create and display avatar with heatmap
|
498 |
-
st.subheader("Avatar with Sensation Heatmap")
|
499 |
-
|
500 |
-
# You need to define sensation_map and sensation_type before this
|
501 |
-
sensation_map = np.random.rand(AVATAR_HEIGHT, 600, AVATAR_WIDTH, 300) # Example random sensation map
|
502 |
-
sensation_type = 0 # Example sensation type (0 for Pain)
|
503 |
-
|
504 |
-
avatar_with_heatmap = create_avatar_with_heatmap(sensation_map, sensation_type)
|
505 |
-
st.image(avatar_with_heatmap, use_column_width=True)
|
506 |
-
|
507 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
508 |
|
509 |
if uploaded_file is not None:
|
510 |
# Read the image
|
511 |
-
|
512 |
-
|
|
|
513 |
|
514 |
# Detect humanoid keypoints
|
515 |
-
keypoints = detect_humanoid(
|
516 |
|
517 |
# Apply touch points to the image
|
518 |
-
processed_image = apply_touch_points(
|
519 |
|
520 |
# Display the processed image
|
521 |
st.image(processed_image, caption='Processed Image with Touch Points', use_column_width=True)
|
522 |
|
523 |
# Create sensation map
|
524 |
-
|
|
|
|
|
525 |
|
526 |
# Display heatmaps for different sensations
|
527 |
sensation_types = ["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field",
|
@@ -535,199 +526,8 @@ if uploaded_file is not None:
|
|
535 |
if st.button("Generate AI Response"):
|
536 |
response = generate_ai_response(keypoints, sensation_map)
|
537 |
st.write("AI Response:", response)
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
# Create futuristic human-like avatar
|
544 |
-
def create_avatar():
|
545 |
-
img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0))
|
546 |
-
draw = ImageDraw.Draw(img)
|
547 |
-
|
548 |
-
# Body
|
549 |
-
draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
|
550 |
-
|
551 |
-
# Head
|
552 |
-
draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
|
553 |
-
|
554 |
-
# Eyes
|
555 |
-
draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
|
556 |
-
draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
|
557 |
-
|
558 |
-
# Nose
|
559 |
-
draw.polygon([(300, 90), (290, 110), (310, 110)], fill=(0, 255, 255, 150))
|
560 |
-
|
561 |
-
# Mouth
|
562 |
-
draw.arc([280, 110, 320, 130], 0, 180, fill=(0, 255, 255, 200), width=2)
|
563 |
-
|
564 |
-
# Arms
|
565 |
-
draw.line([(200, 250), (150, 400)], fill=(0, 255, 255, 200), width=5)
|
566 |
-
draw.line([(400, 250), (450, 400)], fill=(0, 255, 255, 200), width=5)
|
567 |
-
|
568 |
-
# Hands
|
569 |
-
draw.ellipse([140, 390, 160, 410], fill=(0, 255, 255, 150))
|
570 |
-
draw.ellipse([440, 390, 460, 410], fill=(0, 255, 255, 150))
|
571 |
-
|
572 |
-
# Fingers
|
573 |
-
for i in range(5):
|
574 |
-
draw.line([(150 + i*5, 400), (145 + i*5, 420)], fill=(0, 255, 255, 200), width=2)
|
575 |
-
draw.line([(450 - i*5, 400), (455 - i*5, 420)], fill=(0, 255, 255, 200), width=2)
|
576 |
-
|
577 |
-
# Legs
|
578 |
-
draw.line([(250, 600), (230, 780)], fill=(0, 255, 255, 200), width=5)
|
579 |
-
draw.line([(350, 600), (370, 780)], fill=(0, 255, 255, 200), width=5)
|
580 |
-
|
581 |
-
# Feet
|
582 |
-
draw.ellipse([220, 770, 240, 790], fill=(0, 255, 255, 150))
|
583 |
-
draw.ellipse([360, 770, 380, 790], fill=(0, 255, 255, 150))
|
584 |
-
|
585 |
-
# Toes
|
586 |
-
for i in range(5):
|
587 |
-
draw.line([(225 + i*3, 790), (223 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
|
588 |
-
draw.line([(365 + i*3, 790), (363 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
|
589 |
-
|
590 |
-
def generate_neural_network_lines(img, draw):
|
591 |
-
# Neural network lines
|
592 |
-
for _ in range(100):
|
593 |
-
start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
|
594 |
-
end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
|
595 |
-
draw.line([start, end], fill=(0, 255, 255, 50), width=1)
|
596 |
-
return img
|
597 |
-
|
598 |
-
|
599 |
-
# Create and display avatar with heatmap
|
600 |
-
st.subheader("Avatar with Sensation Heatmap")
|
601 |
-
avatar_with_heatmap = create_avatar_with_heatmap()
|
602 |
-
st.image(avatar_with_heatmap, use_column_width=True)
|
603 |
-
# Create avatar function
|
604 |
-
def create_avatar():
|
605 |
-
img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0))
|
606 |
-
draw = ImageDraw.Draw(img)
|
607 |
-
|
608 |
-
# Body
|
609 |
-
draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
|
610 |
-
|
611 |
-
# Head
|
612 |
-
draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
|
613 |
-
|
614 |
-
# Eyes
|
615 |
-
draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
|
616 |
-
draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
|
617 |
-
|
618 |
-
# Nose
|
619 |
-
draw.polygon([(300, 90), (290, 110), (310, 110)], fill=(0, 255, 255, 150))
|
620 |
-
|
621 |
-
# Mouth
|
622 |
-
draw.arc([280, 110, 320, 130], 0, 180, fill=(0, 255, 255, 200), width=2)
|
623 |
-
|
624 |
-
# Arms
|
625 |
-
draw.line([(200, 250), (150, 400)], fill=(0, 255, 255, 200), width=5)
|
626 |
-
draw.line([(400, 250), (450, 400)], fill=(0, 255, 255, 200), width=5)
|
627 |
-
|
628 |
-
# Hands
|
629 |
-
draw.ellipse([140, 390, 160, 410], fill=(0, 255, 255, 150))
|
630 |
-
draw.ellipse([440, 390, 460, 410], fill=(0, 255, 255, 150))
|
631 |
-
|
632 |
-
# Fingers
|
633 |
-
for i in range(5):
|
634 |
-
draw.line([(150 + i*5, 400), (145 + i*5, 420)], fill=(0, 255, 255, 200), width=2)
|
635 |
-
draw.line([(450 - i*5, 400), (455 - i*5, 420)], fill=(0, 255, 255, 200), width=2)
|
636 |
-
|
637 |
-
# Legs
|
638 |
-
draw.line([(250, 600), (230, 780)], fill=(0, 255, 255, 200), width=5)
|
639 |
-
draw.line([(350, 600), (370, 780)], fill=(0, 255, 255, 200), width=5)
|
640 |
-
|
641 |
-
# Feet
|
642 |
-
draw.ellipse([220, 770, 240, 790], fill=(0, 255, 255, 150))
|
643 |
-
draw.ellipse([360, 770, 380, 790], fill=(0, 255, 255, 150))
|
644 |
-
|
645 |
-
# Toes
|
646 |
-
for i in range(5):
|
647 |
-
draw.line([(225 + i*3, 790), (223 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
|
648 |
-
draw.line([(365 + i*3, 790), (363 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
|
649 |
-
|
650 |
-
# Neural network lines
|
651 |
-
for _ in range(100):
|
652 |
-
start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
|
653 |
-
end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
|
654 |
-
draw.line([start, end], fill=(0, 255, 255, 50), width=1)
|
655 |
-
|
656 |
-
return img
|
657 |
-
def create_avatar_with_heatmap(image_path, show_heatmap=True):
|
658 |
-
# Load the image
|
659 |
-
avatar_img = Image.open(image_path)
|
660 |
-
|
661 |
-
if not show_heatmap:
|
662 |
-
return avatar_img
|
663 |
-
|
664 |
-
# Create a heatmap
|
665 |
-
heatmap_img = create_heatmap(sensation_map)
|
666 |
-
|
667 |
-
# Resize heatmap to match avatar size
|
668 |
-
heatmap_img = heatmap_img.resize((image.width, image.height))
|
669 |
-
|
670 |
-
# Adjust alpha channel of heatmap
|
671 |
-
data = np.array(heatmap_img)
|
672 |
-
if data.shape[2] == 3: # If RGB, add an alpha channel
|
673 |
-
data = np.concatenate([data, np.full((data.shape[0], data.shape[1], 1), 255, dtype=np.uint8)], axis=2)
|
674 |
-
data[:, :, 3] = data[:, :, 3] * 0.5 # Reduce opacity to 50%
|
675 |
-
heatmap_img = Image.fromarray(data)
|
676 |
-
|
677 |
-
# Combine avatar and heatmap
|
678 |
-
combined_img = Image.alpha_composite(avatar_img.convert('RGBA'), heatmap_img.convert('RGBA'))
|
679 |
-
return combined_img
|
680 |
-
|
681 |
-
# Create and display avatar with optional heatmap
|
682 |
-
st.subheader("Avatar with Optional Sensation Heatmap")
|
683 |
-
avatar_with_heatmap = create_avatar_with_heatmap(show_heatmap)
|
684 |
-
st.image(avatar_with_heatmap, use_column_width=True)
|
685 |
-
|
686 |
-
# Load the chosen humanoid image
|
687 |
-
image_path = 'chosen_avatar.jpg'
|
688 |
-
keypoints = detect_humanoid(image_path)
|
689 |
-
image_with_touch_points = apply_touch_points(image_path, keypoints)
|
690 |
-
heatmap_avatar = create_avatar_with_heatmap(image_path)
|
691 |
-
|
692 |
-
# Display the images
|
693 |
-
plt.figure(figsize=(15, 5))
|
694 |
-
plt.subplot(1, 3, 1)
|
695 |
-
plt.imshow(image_with_touch_points)
|
696 |
-
plt.title('Image with Touch Points')
|
697 |
-
|
698 |
-
plt.subplot(1, 3, 2)
|
699 |
-
plt.imshow(heatmap_avatar)
|
700 |
-
plt.title('Avatar with Heatmap')
|
701 |
-
|
702 |
-
plt.show()
|
703 |
-
|
704 |
-
# Create three columns
|
705 |
-
col1, col2, col3 = st.columns(3)
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
# Avatar display with touch interface
|
710 |
-
with col1:
|
711 |
-
st.subheader("Humanoid Avatar Interface")
|
712 |
-
|
713 |
-
# Use st_canvas for touch input
|
714 |
-
canvas_result = st_canvas(
|
715 |
-
fill_color="rgba(0, 255, 255, 0.3)",
|
716 |
-
stroke_width=2,
|
717 |
-
stroke_color="#00FFFF",
|
718 |
-
background_image=avatar_with_heatmap,
|
719 |
-
height=AVATAR_HEIGHT,
|
720 |
-
width=AVATAR_WIDTH,
|
721 |
-
drawing_mode="point",
|
722 |
-
key="canvas",
|
723 |
-
)
|
724 |
-
|
725 |
-
|
726 |
-
with col3:
|
727 |
-
st.subheader("Sensation Heatmap")
|
728 |
-
heatmap = create_heatmap(avatar_sensation_map)
|
729 |
-
st.image(heatmap, use_column_width=True)
|
730 |
-
# Touch controls and output
|
731 |
with col2:
|
732 |
st.subheader("Neural Interface Controls")
|
733 |
|
|
|
414 |
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.5)
|
415 |
|
416 |
def detect_humanoid(image_path):
|
417 |
+
image = cv2.imread(image_path)
|
418 |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
419 |
results = pose.process(image_rgb)
|
420 |
if results.pose_landmarks:
|
|
|
429 |
return []
|
430 |
|
431 |
def apply_touch_points(image_path, keypoints):
|
432 |
+
image = cv2.imread(image_path)
|
433 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
434 |
+
image = Image.fromarray(image)
|
435 |
draw = ImageDraw.Draw(image)
|
436 |
for point in keypoints:
|
437 |
draw.ellipse([point[0]-5, point[1]-5, point[0]+5, point[1]+5], fill='red')
|
|
|
464 |
|
465 |
return sensation_map
|
466 |
|
|
|
|
|
|
|
|
|
467 |
def create_heatmap(sensation_map, sensation_type):
|
468 |
plt.figure(figsize=(10, 15))
|
469 |
sns.heatmap(sensation_map[:, :, sensation_type], cmap='viridis')
|
|
|
492 |
|
493 |
return response
|
494 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
496 |
|
497 |
if uploaded_file is not None:
|
498 |
# Read the image
|
499 |
+
image_path = 'temp.jpg'
|
500 |
+
with open(image_path, 'wb') as f:
|
501 |
+
f.write(uploaded_file.getvalue())
|
502 |
|
503 |
# Detect humanoid keypoints
|
504 |
+
keypoints = detect_humanoid(image_path)
|
505 |
|
506 |
# Apply touch points to the image
|
507 |
+
processed_image = apply_touch_points(image_path, keypoints)
|
508 |
|
509 |
# Display the processed image
|
510 |
st.image(processed_image, caption='Processed Image with Touch Points', use_column_width=True)
|
511 |
|
512 |
# Create sensation map
|
513 |
+
image = cv2.imread(image_path)
|
514 |
+
image_height, image_width, _ = image.shape
|
515 |
+
sensation_map = create_sensation_map(image_width, image_height, keypoints)
|
516 |
|
517 |
# Display heatmaps for different sensations
|
518 |
sensation_types = ["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field",
|
|
|
526 |
if st.button("Generate AI Response"):
|
527 |
response = generate_ai_response(keypoints, sensation_map)
|
528 |
st.write("AI Response:", response)
|
529 |
+
|
530 |
+
# Touch controls and output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
with col2:
|
532 |
st.subheader("Neural Interface Controls")
|
533 |
|