File size: 3,873 Bytes
a9abdf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import streamlit as st
import tensorflow as tf
from PIL import Image
import numpy as np
import cv2
from Utils import *
model_path="C:/Users/pc/Desktop/Merchant_Landmark_V1_30122021/30122021SavedModels/SavedModel100Epochs"
model = tf.keras.models.load_model(model_path,custom_objects=None)
st.subheader("Upload Merchant Knee View")
image_file = st.file_uploader("Upload Images", type=["dcm"])
examples=["C:/Users/pc/Desktop/Merchant_Landmark_V1_30122021/Dicoms/1.2.392.200036.9107.500.304.423.20111205.94459.10423.dcm"
,"C:/Users/pc/Desktop/Merchant_Landmark_V1_30122021/Dicoms/1.2.392.200036.9107.500.304.423.20120225.115452.10423.dcm",
"C:/Users/pc/Desktop/Merchant_Landmark_V1_30122021/Dicoms/1.2.392.200036.9107.500.304.423.20120509.174735.10423.dcm"]
colx1, colx2, colx3 = st.columns(3)
with colx1:
st.text("Example Dicom ")
if st.button('Example 1'):
image_file=examples[0]
with colx2:
st.text("Example Dicom ")
if st.button('Example 2'):
image_file=examples[1]
with colx3:
st.text("Example Dicom ")
if st.button('Example 3'):
image_file=examples[2]
if image_file is not None:
st.text("Making A Prediction ....")
try:
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(image_file,False,True)
except:
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(image_file,True,True)
pass
img = np.copy(data)
#Denoise Image
kernel =( np.ones((5,5), dtype=np.float32))
img2=cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel,iterations=2 )
img2=cv2.erode(img2,kernel,iterations =2)
if len(img2.shape)==3:
img2=img2[:,:,0]
#Threshhold 100- 4096
ret,thresh = cv2.threshold(img2,100, 4096, cv2.THRESH_BINARY)
#To Thresh uint8 becasue "findContours" doesnt accept uint16
thresh =((thresh/np.max(thresh))*255).astype('uint8')
a1,b1=thresh.shape
#Find Countours
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#If There is no countour
if len(contours)==0:
roi= thresh
else:
#Get Areas
c_area=np.zeros([len(contours)])
for i in range(len(contours)):
c_area[i]= cv2.contourArea(contours[i])
#Find Max Countour
cnts=contours[np.argmax(c_area)]
x, y, w, h = cv2.boundingRect(cnts)
#Posibble Square
roi = croping(data, x, y, w, h)
# Absolute Square
roi=modification_cropping(roi)
# Resize to 256x256 with Inter_Nearest
roi=cv2.resize(roi,(256,256),interpolation=cv2.INTER_NEAREST)
pre=predict(roi,model)
heatpoint=points_max_value(pre)
output=put_text_point(roi,heatpoint)
output,PatellerCongruenceAngle,ParalelTiltAngle=draw_angle(output,heatpoint)
data_text = {'PatientID': PatientID, 'PatientName': PatientName,
'Pateller_Congruence_Angle': PatellerCongruenceAngle,
'Paralel_Tilt_Angle':ParalelTiltAngle,
'SOP_Instance_UID':SOPInstanceUID,
"StudyDate" :StudyDate,
"InstitutionName" :InstitutionAddress,
"PatientAge" :PatientAge ,
"PatientSex" :PatientSex,
}
col1, col2 = st.columns(2)
with col1:
st.text("Original Dicom Image")
st.image(np.uint8((data/np.max(data)*255)),width=350)
with col2:
st.text("Predicted Image ")
st.image(np.uint8(output),width=350)
st.write(data_text)
|