SerdarHelli
commited on
Commit
·
9d49616
1
Parent(s):
a9abdf6
Upload Utils.py
Browse files
Utils.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
@author: serdarhelli
|
4 |
+
"""
|
5 |
+
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import math
|
9 |
+
import cv2
|
10 |
+
import pydicom
|
11 |
+
from pydicom.pixel_data_handlers.util import apply_voi_lut
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
def find_center(img):
|
16 |
+
thresh=(img)*(255/np.max(img))
|
17 |
+
thresh = thresh.astype(np.uint8)
|
18 |
+
kernel =( np.ones((5,5), dtype=np.float32))
|
19 |
+
ret,thresh = cv2.threshold(thresh, 0, 255, cv2.THRESH_BINARY)
|
20 |
+
thresh=cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel,iterations=1 )
|
21 |
+
thresh=cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel,iterations=1 )
|
22 |
+
thresh=cv2.erode(thresh,kernel,iterations =1)
|
23 |
+
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
|
24 |
+
if len(contours)!=0:
|
25 |
+
c_area=np.zeros([len(contours)])
|
26 |
+
for i in range(len(contours)):
|
27 |
+
c_area[i]= cv2.contourArea(contours[i])
|
28 |
+
c_1=contours[np.argmax(c_area)]
|
29 |
+
M = cv2.moments(c_1)
|
30 |
+
cX = int(M["m10"] / M["m00"])
|
31 |
+
cY = int(M["m01"] / M["m00"])
|
32 |
+
return cX,cY
|
33 |
+
else:
|
34 |
+
return 0,0
|
35 |
+
|
36 |
+
def points_center_mass(predict):
|
37 |
+
points=np.zeros([6,2])
|
38 |
+
for i in range(6):
|
39 |
+
points[i,:]=find_center(predict[0,:,:,i])
|
40 |
+
return np.int32(points)
|
41 |
+
|
42 |
+
|
43 |
+
def points_max_value(predict):
|
44 |
+
points=np.zeros([6,2])
|
45 |
+
for i in range(6):
|
46 |
+
pre=predict[0,:,:,i]
|
47 |
+
points[i,:]=np.where(pre == pre.max())
|
48 |
+
return np.fliplr(np.int32(points))
|
49 |
+
|
50 |
+
|
51 |
+
def read_dicom(path, voi_lut = True, fix_monochrome = True):
|
52 |
+
dicom = pydicom.read_file(path)
|
53 |
+
# VOI LUT (if available by DICOM device) is used to transform raw DICOM data to "human-friendly" view
|
54 |
+
if voi_lut:
|
55 |
+
data = apply_voi_lut(dicom.pixel_array, dicom)
|
56 |
+
else:
|
57 |
+
data = dicom.pixel_array
|
58 |
+
|
59 |
+
# depending on this value, X-ray may look inverted - fix that:
|
60 |
+
if fix_monochrome and dicom.PhotometricInterpretation == "MONOCHROME1":
|
61 |
+
data = np.amax(data) - data
|
62 |
+
# data=data*255
|
63 |
+
# data = np.uint8(data)
|
64 |
+
try:
|
65 |
+
PatientName=str(dicom.PatientName.components[0])
|
66 |
+
except:
|
67 |
+
PatientName="Empty"
|
68 |
+
pass
|
69 |
+
|
70 |
+
try:
|
71 |
+
PatientID=str(dicom.PatientID)
|
72 |
+
except:
|
73 |
+
PatientID="Empty"
|
74 |
+
pass
|
75 |
+
|
76 |
+
try:
|
77 |
+
SOPInstanceUID=str(dicom.SOPInstanceUID.name)
|
78 |
+
except:
|
79 |
+
SOPInstanceUID="Empty"
|
80 |
+
pass
|
81 |
+
|
82 |
+
try:
|
83 |
+
StudyDate=str(dicom.StudyDate)
|
84 |
+
except:
|
85 |
+
StudyDate="Empty"
|
86 |
+
pass
|
87 |
+
|
88 |
+
try:
|
89 |
+
InstitutionAddress=str(dicom.InstitutionName)
|
90 |
+
except:
|
91 |
+
InstitutionAddress="Empty"
|
92 |
+
pass
|
93 |
+
|
94 |
+
try:
|
95 |
+
PatientAge=str(dicom.PatientAge)
|
96 |
+
except:
|
97 |
+
PatientAge="Empty"
|
98 |
+
pass
|
99 |
+
|
100 |
+
try:
|
101 |
+
PatientSex=str(dicom.PatientSex)
|
102 |
+
except:
|
103 |
+
PatientSex="Empty"
|
104 |
+
pass
|
105 |
+
|
106 |
+
#data -> np.uint16
|
107 |
+
return data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
def modification_cropping(roi):
|
112 |
+
if roi.shape[0]!=roi.shape[1]:
|
113 |
+
if roi.shape[0]>roi.shape[1]:
|
114 |
+
img2=np.zeros([roi.shape[0],roi.shape[0]])
|
115 |
+
add=(roi.shape[0]-roi.shape[1])
|
116 |
+
a1=add//2
|
117 |
+
a2=add-a1
|
118 |
+
img2[:,a1:(roi.shape[0]-a2)]=roi
|
119 |
+
|
120 |
+
if roi.shape[1]>roi.shape[0]:
|
121 |
+
img2=np.zeros([roi.shape[1],roi.shape[1]])
|
122 |
+
add=(roi.shape[1]-roi.shape[0])
|
123 |
+
a1=add//2
|
124 |
+
a2=add-a1
|
125 |
+
img2[a1:(roi.shape[1]-a2),:]=roi
|
126 |
+
else:
|
127 |
+
img2=roi
|
128 |
+
return img2
|
129 |
+
|
130 |
+
|
131 |
+
def croping(img,x, y, w, h):
|
132 |
+
if y<0:
|
133 |
+
y=0
|
134 |
+
if abs(w)<abs(h):
|
135 |
+
z=np.abs(h-w)
|
136 |
+
if img.shape[1]<x+w+(z//2):
|
137 |
+
if x-(z//2)>0:
|
138 |
+
img2=img[y:y+h, x-(z//2):img.shape[1]].copy()
|
139 |
+
else:
|
140 |
+
img2=img[y:y+h, 0:img.shape[1]].copy()
|
141 |
+
else:
|
142 |
+
if x-(z//2)>0:
|
143 |
+
img2=img[y:y+h, x-(z//2):x+w+(z//2)].copy()
|
144 |
+
else:
|
145 |
+
img2=img[y:y+h, 0:x+w+(z//2)].copy()
|
146 |
+
if abs(h)<abs(w):
|
147 |
+
z=np.abs(h-w)
|
148 |
+
if img.shape[0]<y+h+(z//2):
|
149 |
+
if y-(z//2)>0:
|
150 |
+
img2=img[y-(z//2):img.shape[0], x:x+w].copy()
|
151 |
+
else:
|
152 |
+
img2=img[0:img.shape[0], x:x+w].copy()
|
153 |
+
else:
|
154 |
+
if y-(z//2)>0:
|
155 |
+
img2=img[y-(z//2):y+h+(z//2), x:x+w].copy()
|
156 |
+
else:
|
157 |
+
img2=img[0:y+h+(z//2), x:x+w].copy()
|
158 |
+
if abs(h)==abs(w):
|
159 |
+
img2=img[y:y + h, x:x + w].copy()
|
160 |
+
return img2
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
def crop_resize(path):
|
168 |
+
try:
|
169 |
+
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(path,False,True)
|
170 |
+
except:
|
171 |
+
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(path,True,True)
|
172 |
+
pass
|
173 |
+
img = np.copy(data)
|
174 |
+
|
175 |
+
#Denoise Image
|
176 |
+
kernel =( np.ones((5,5), dtype=np.float32))
|
177 |
+
img2=cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel,iterations=2 )
|
178 |
+
img2=cv2.erode(img2,kernel,iterations =2)
|
179 |
+
if len(img2.shape)==3:
|
180 |
+
img2=img2[:,:,0]
|
181 |
+
|
182 |
+
#Threshhold 100- 4096
|
183 |
+
ret,thresh = cv2.threshold(img2,100, 4096, cv2.THRESH_BINARY)
|
184 |
+
|
185 |
+
#To Thresh uint8 becasue "findContours" doesnt accept uint16
|
186 |
+
thresh =((thresh/np.max(thresh))*255).astype('uint8')
|
187 |
+
a1,b1=thresh.shape
|
188 |
+
#Find Countours
|
189 |
+
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
190 |
+
|
191 |
+
#If There is no countour
|
192 |
+
if len(contours)==0:
|
193 |
+
return thresh,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex
|
194 |
+
|
195 |
+
#Get Areas
|
196 |
+
c_area=np.zeros([len(contours)])
|
197 |
+
for i in range(len(contours)):
|
198 |
+
c_area[i]= cv2.contourArea(contours[i])
|
199 |
+
|
200 |
+
#Find Max Countour
|
201 |
+
cnts=contours[np.argmax(c_area)]
|
202 |
+
x, y, w, h = cv2.boundingRect(cnts)
|
203 |
+
|
204 |
+
#Posibble Square
|
205 |
+
roi = croping(data, x, y, w, h)
|
206 |
+
|
207 |
+
# Absolute Square
|
208 |
+
roi=modification_cropping(roi)
|
209 |
+
|
210 |
+
# Resize to 256x256 with Inter_Nearest
|
211 |
+
roi=cv2.resize(roi,(256,256),interpolation=cv2.INTER_NEAREST)
|
212 |
+
|
213 |
+
return roi,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex
|
214 |
+
|
215 |
+
def put_text_point(original_img,heatpoint):
|
216 |
+
original_img =((original_img/np.max(original_img))*255).astype('uint8')
|
217 |
+
color = (0, 51, 204)
|
218 |
+
img = cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB)
|
219 |
+
for i in range(6):
|
220 |
+
if heatpoint[i,0]<=0 and heatpoint[i,1]<=0:
|
221 |
+
print("L"+str(i)+" There is no Point")
|
222 |
+
else :
|
223 |
+
if i>2:
|
224 |
+
coordx=0
|
225 |
+
coordy=-(i*3)
|
226 |
+
else:
|
227 |
+
coordx=-(i*3)
|
228 |
+
coordy=+(i*3)+10
|
229 |
+
img=cv2.putText(img, "L"+str(i),(heatpoint[i,0]+coordx,heatpoint[i,1]+coordy), cv2.FONT_HERSHEY_SIMPLEX,0.35, color, 1)
|
230 |
+
img = cv2.circle(img, (heatpoint[i,0],heatpoint[i,1]), radius=2, color=color, thickness=-1)
|
231 |
+
return img
|
232 |
+
|
233 |
+
def get_vector(pt1,pt2):
|
234 |
+
vec=np.zeros([2])
|
235 |
+
vec[1]=(pt2[1]-pt1[1])
|
236 |
+
vec[0]=(pt2[0]-pt1[0])
|
237 |
+
return vec
|
238 |
+
|
239 |
+
def dotproduct(v1, v2):
|
240 |
+
return sum((a*b) for a, b in zip(v1, v2))
|
241 |
+
|
242 |
+
def length(v):
|
243 |
+
return math.sqrt(dotproduct(v, v))
|
244 |
+
|
245 |
+
def getAngle(v1, v2):
|
246 |
+
if length(v1)==0 or length(v2)==0:
|
247 |
+
return "Failed"
|
248 |
+
return math.degrees(math.acos(dotproduct(v1, v2) / (length(v1) * length(v2))))
|
249 |
+
|
250 |
+
def bisector_vector(v1,v2):
|
251 |
+
if length(v1)==0 or length(v2) ==0:
|
252 |
+
return [0,0]
|
253 |
+
v1=v1/(length(v1))
|
254 |
+
v2=v2/(length(v2))
|
255 |
+
v3=(v1+v2)
|
256 |
+
return v3
|
257 |
+
|
258 |
+
|
259 |
+
#magnitude 50 length to l1 to l3
|
260 |
+
def angle_patellercongruence(heatpoint,magnitude=50):
|
261 |
+
v1=get_vector(heatpoint[1,:],heatpoint[2,:])
|
262 |
+
v2=get_vector(heatpoint[1,:],heatpoint[0,:])
|
263 |
+
v3=get_vector(heatpoint[1,:],heatpoint[3,:])
|
264 |
+
v4=bisector_vector(v1,v2)
|
265 |
+
v=np.int32(v4*magnitude)
|
266 |
+
coord=v+heatpoint[1,:]
|
267 |
+
if length(v3)==0:
|
268 |
+
return "Failed",[0,0]
|
269 |
+
angle_patellercongruence=getAngle(v3/(length(v3)),v4)
|
270 |
+
return angle_patellercongruence,coord
|
271 |
+
|
272 |
+
def angle_paraleltilt_displacement(heatpoint):
|
273 |
+
v1=get_vector(heatpoint[4,:],heatpoint[5,:])
|
274 |
+
v2=get_vector(heatpoint[0,:],heatpoint[2,:])
|
275 |
+
angle_paraleltilt=getAngle(v1,v2)
|
276 |
+
return angle_paraleltilt
|
277 |
+
|
278 |
+
|
279 |
+
def draw_angle(img,heatpoint):
|
280 |
+
color = (255, 26, 26)
|
281 |
+
color2=(255, 255, 0)
|
282 |
+
color3=(51, 255, 51)
|
283 |
+
if np.min(heatpoint[0:3,:])<=0:
|
284 |
+
patellercongruence,angle_paraleltilt="Failed"
|
285 |
+
return img
|
286 |
+
if np.min(heatpoint[3:,:])<=0:
|
287 |
+
angle_paraleltilt="Failed"
|
288 |
+
v1=get_vector(heatpoint[1,:],heatpoint[2,:])
|
289 |
+
v2=get_vector(heatpoint[1,:],heatpoint[0,:])
|
290 |
+
angle=getAngle(v1,v2)
|
291 |
+
patellercongruence,coord=angle_patellercongruence(heatpoint)
|
292 |
+
angle_paraleltilt=angle_paraleltilt_displacement(heatpoint)
|
293 |
+
img=cv2.line(img,tuple( (heatpoint[1,:])), tuple((heatpoint[2,:])), color, thickness=1, lineType=8)
|
294 |
+
img=cv2.line(img, tuple((heatpoint[1,:])), tuple((heatpoint[0,:])), color, thickness=1, lineType=8)
|
295 |
+
img=cv2.line(img, tuple((heatpoint[1,:])), tuple((heatpoint[3,:])), color2, thickness=1, lineType=8)
|
296 |
+
img=cv2.line(img, tuple((heatpoint[4,:])), tuple((heatpoint[5,:])), color3, thickness=1, lineType=8)
|
297 |
+
img=cv2.line(img, tuple((heatpoint[0,:])), tuple((heatpoint[2,:])), color3, thickness=1, lineType=8)
|
298 |
+
img=cv2.line(img,tuple( (heatpoint[1,:])), tuple(coord), color2, thickness=1, lineType=8)
|
299 |
+
img=cv2.putText(img,"Pateller Congruence Angle :"+str(round(patellercongruence,2)),(25,25), cv2.FONT_HERSHEY_SIMPLEX,0.35, color2, 1)
|
300 |
+
img=cv2.putText(img,"Paralel Tilt Angle :"+str(round(angle_paraleltilt,2)),(50,50), cv2.FONT_HERSHEY_SIMPLEX,0.35, color3, 1)
|
301 |
+
img=cv2.putText(img, "Angle :"+str(round(angle,2)),(heatpoint[1,0]+10,heatpoint[1,1]+15), cv2.FONT_HERSHEY_SIMPLEX,0.35, color,1)
|
302 |
+
return img,patellercongruence,angle_paraleltilt
|
303 |
+
|
304 |
+
def predict(img,model):
|
305 |
+
#Normalization
|
306 |
+
img=np.float32(img/(np.max(img)))
|
307 |
+
img=np.reshape(img,(1,256,256,1))
|
308 |
+
predictions=model.predict(img)
|
309 |
+
#Get Final Prediction
|
310 |
+
pre=predictions[-1]
|
311 |
+
return pre
|
312 |
+
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
|