Spaces:
Runtime error
Runtime error
File size: 31,040 Bytes
594d040 db078b4 594d040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
import sys
import os
os.system("git clone https://github.com/royorel/StyleSDF.git")
sys.path.append("StyleSDF")
os.system(f"{sys.executable} -m pip install -U fvcore")
import torch
pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
version_str="".join([
f"py3{sys.version_info.minor}_cu",
torch.version.cuda.replace(".",""),
f"_pyt{pyt_version_str}"
])
os.system(f"{sys.executable} -m pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html")
from download_models import download_pretrained_models
download_pretrained_models()
import torch
import trimesh
import numpy as np
from munch import *
from PIL import Image
from tqdm import tqdm
from torch.nn import functional as F
from torch.utils import data
from torchvision import utils
from torchvision import transforms
from skimage.measure import marching_cubes
from scipy.spatial import Delaunay
from options import BaseOptions
from model import Generator
from utils import (
generate_camera_params,
align_volume,
extract_mesh_with_marching_cubes,
xyz2mesh,
)
from utils import (
generate_camera_params, align_volume, extract_mesh_with_marching_cubes,
xyz2mesh, create_cameras, create_mesh_renderer, add_textures,
)
from pytorch3d.structures import Meshes
from pdb import set_trace as st
import skvideo.io
def generate(opt, g_ema, surface_g_ema, device, mean_latent, surface_mean_latent):
g_ema.eval()
if not opt.no_surface_renderings:
surface_g_ema.eval()
# set camera angles
if opt.fixed_camera_angles:
# These can be changed to any other specific viewpoints.
# You can add or remove viewpoints as you wish
locations = torch.tensor([[0, 0],
[-1.5 * opt.camera.azim, 0],
[-1 * opt.camera.azim, 0],
[-0.5 * opt.camera.azim, 0],
[0.5 * opt.camera.azim, 0],
[1 * opt.camera.azim, 0],
[1.5 * opt.camera.azim, 0],
[0, -1.5 * opt.camera.elev],
[0, -1 * opt.camera.elev],
[0, -0.5 * opt.camera.elev],
[0, 0.5 * opt.camera.elev],
[0, 1 * opt.camera.elev],
[0, 1.5 * opt.camera.elev]], device=device)
# For zooming in/out change the values of fov
# (This can be defined for each view separately via a custom tensor
# like the locations tensor above. Tensor shape should be [locations.shape[0],1])
# reasonable values are [0.75 * opt.camera.fov, 1.25 * opt.camera.fov]
fov = opt.camera.fov * torch.ones((locations.shape[0],1), device=device)
num_viewdirs = locations.shape[0]
else: # draw random camera angles
locations = None
# fov = None
fov = opt.camera.fov
num_viewdirs = opt.num_views_per_id
# generate images
for i in tqdm(range(opt.identities)):
with torch.no_grad():
chunk = 8
sample_z = torch.randn(1, opt.style_dim, device=device).repeat(num_viewdirs,1)
sample_cam_extrinsics, sample_focals, sample_near, sample_far, sample_locations = \
generate_camera_params(opt.renderer_output_size, device, batch=num_viewdirs,
locations=locations, #input_fov=fov,
uniform=opt.camera.uniform, azim_range=opt.camera.azim,
elev_range=opt.camera.elev, fov_ang=fov,
dist_radius=opt.camera.dist_radius)
rgb_images = torch.Tensor(0, 3, opt.size, opt.size)
rgb_images_thumbs = torch.Tensor(0, 3, opt.renderer_output_size, opt.renderer_output_size)
for j in range(0, num_viewdirs, chunk):
out = g_ema([sample_z[j:j+chunk]],
sample_cam_extrinsics[j:j+chunk],
sample_focals[j:j+chunk],
sample_near[j:j+chunk],
sample_far[j:j+chunk],
truncation=opt.truncation_ratio,
truncation_latent=mean_latent)
rgb_images = torch.cat([rgb_images, out[0].cpu()], 0)
rgb_images_thumbs = torch.cat([rgb_images_thumbs, out[1].cpu()], 0)
utils.save_image(rgb_images,
os.path.join(opt.results_dst_dir, 'images','{}.png'.format(str(i).zfill(7))),
nrow=num_viewdirs,
normalize=True,
padding=0,
value_range=(-1, 1),)
utils.save_image(rgb_images_thumbs,
os.path.join(opt.results_dst_dir, 'images','{}_thumb.png'.format(str(i).zfill(7))),
nrow=num_viewdirs,
normalize=True,
padding=0,
value_range=(-1, 1),)
# this is done to fit to RTX2080 RAM size (11GB)
del out
torch.cuda.empty_cache()
if not opt.no_surface_renderings:
surface_chunk = 1
scale = surface_g_ema.renderer.out_im_res / g_ema.renderer.out_im_res
surface_sample_focals = sample_focals * scale
for j in range(0, num_viewdirs, surface_chunk):
surface_out = surface_g_ema([sample_z[j:j+surface_chunk]],
sample_cam_extrinsics[j:j+surface_chunk],
surface_sample_focals[j:j+surface_chunk],
sample_near[j:j+surface_chunk],
sample_far[j:j+surface_chunk],
truncation=opt.truncation_ratio,
truncation_latent=surface_mean_latent,
return_sdf=True,
return_xyz=True)
xyz = surface_out[2].cpu()
sdf = surface_out[3].cpu()
# this is done to fit to RTX2080 RAM size (11GB)
del surface_out
torch.cuda.empty_cache()
# mesh extractions are done one at a time
for k in range(surface_chunk):
curr_locations = sample_locations[j:j+surface_chunk]
loc_str = '_azim{}_elev{}'.format(int(curr_locations[k,0] * 180 / np.pi),
int(curr_locations[k,1] * 180 / np.pi))
# Save depth outputs as meshes
depth_mesh_filename = os.path.join(opt.results_dst_dir,'depth_map_meshes','sample_{}_depth_mesh{}.obj'.format(i, loc_str))
depth_mesh = xyz2mesh(xyz[k:k+surface_chunk])
if depth_mesh != None:
with open(depth_mesh_filename, 'w') as f:
depth_mesh.export(f,file_type='obj')
# extract full geometry with marching cubes
if j == 0:
try:
frostum_aligned_sdf = align_volume(sdf)
marching_cubes_mesh = extract_mesh_with_marching_cubes(frostum_aligned_sdf[k:k+surface_chunk])
except ValueError:
marching_cubes_mesh = None
print('Marching cubes extraction failed.')
print('Please check whether the SDF values are all larger (or all smaller) than 0.')
return depth_mesh,marching_cubes_mesh
# User options
def get_generate_vars(model_type):
opt = BaseOptions().parse()
opt.camera.uniform = True
opt.model.is_test = True
opt.model.freeze_renderer = False
opt.rendering.offset_sampling = True
opt.rendering.static_viewdirs = True
opt.rendering.force_background = True
opt.rendering.perturb = 0
opt.inference.renderer_output_size = opt.model.renderer_spatial_output_dim
opt.inference.style_dim = opt.model.style_dim
opt.inference.project_noise = opt.model.project_noise
# User options
opt.inference.no_surface_renderings = False # When true, only RGB images will be created
opt.inference.fixed_camera_angles = False # When true, each identity will be rendered from a specific set of 13 viewpoints. Otherwise, random views are generated
opt.inference.identities = 1 # Number of identities to generate
opt.inference.num_views_per_id = 1 # Number of viewpoints generated per identity. This option is ignored if opt.inference.fixed_camera_angles is true.
opt.inference.camera = opt.camera
# Load saved model
if model_type == 'ffhq':
model_path = 'ffhq1024x1024.pt'
opt.model.size = 1024
opt.experiment.expname = 'ffhq1024x1024'
else:
opt.inference.camera.azim = 0.15
model_path = 'afhq512x512.pt'
opt.model.size = 512
opt.experiment.expname = 'afhq512x512'
# Create results directory
result_model_dir = 'final_model'
results_dir_basename = os.path.join(opt.inference.results_dir, opt.experiment.expname)
opt.inference.results_dst_dir = os.path.join(results_dir_basename, result_model_dir)
if opt.inference.fixed_camera_angles:
opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'fixed_angles')
else:
opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'random_angles')
os.makedirs(opt.inference.results_dst_dir, exist_ok=True)
os.makedirs(os.path.join(opt.inference.results_dst_dir, 'images'), exist_ok=True)
if not opt.inference.no_surface_renderings:
os.makedirs(os.path.join(opt.inference.results_dst_dir, 'depth_map_meshes'), exist_ok=True)
os.makedirs(os.path.join(opt.inference.results_dst_dir, 'marching_cubes_meshes'), exist_ok=True)
opt.inference.size = opt.model.size
checkpoint_path = os.path.join('full_models', model_path)
checkpoint = torch.load(checkpoint_path)
# Load image generation model
g_ema = Generator(opt.model, opt.rendering).to(device)
pretrained_weights_dict = checkpoint["g_ema"]
model_dict = g_ema.state_dict()
for k, v in pretrained_weights_dict.items():
if v.size() == model_dict[k].size():
model_dict[k] = v
g_ema.load_state_dict(model_dict)
# Load a second volume renderer that extracts surfaces at 128x128x128 (or higher) for better surface resolution
if not opt.inference.no_surface_renderings:
opt['surf_extraction'] = Munch()
opt.surf_extraction.rendering = opt.rendering
opt.surf_extraction.model = opt.model.copy()
opt.surf_extraction.model.renderer_spatial_output_dim = 128
opt.surf_extraction.rendering.N_samples = opt.surf_extraction.model.renderer_spatial_output_dim
opt.surf_extraction.rendering.return_xyz = True
opt.surf_extraction.rendering.return_sdf = True
surface_g_ema = Generator(opt.surf_extraction.model, opt.surf_extraction.rendering, full_pipeline=False).to(device)
# Load weights to surface extractor
surface_extractor_dict = surface_g_ema.state_dict()
for k, v in pretrained_weights_dict.items():
if k in surface_extractor_dict.keys() and v.size() == surface_extractor_dict[k].size():
surface_extractor_dict[k] = v
surface_g_ema.load_state_dict(surface_extractor_dict)
else:
surface_g_ema = None
# Get the mean latent vector for g_ema
if opt.inference.truncation_ratio < 1:
with torch.no_grad():
mean_latent = g_ema.mean_latent(opt.inference.truncation_mean, device)
else:
surface_mean_latent = None
# Get the mean latent vector for surface_g_ema
if not opt.inference.no_surface_renderings:
surface_mean_latent = mean_latent[0]
else:
surface_mean_latent = None
return opt.inference, g_ema, surface_g_ema, mean_latent, surface_mean_latent,opt.inference.results_dst_dir
def get_rendervideo_vars(model_type,number_frames):
opt = BaseOptions().parse()
opt.model.is_test = True
opt.model.style_dim = 256
opt.model.freeze_renderer = False
opt.inference.size = opt.model.size
opt.inference.camera = opt.camera
opt.inference.renderer_output_size = opt.model.renderer_spatial_output_dim
opt.inference.style_dim = opt.model.style_dim
opt.inference.project_noise = opt.model.project_noise
opt.rendering.perturb = 0
opt.rendering.force_background = True
opt.rendering.static_viewdirs = True
opt.rendering.return_sdf = True
opt.rendering.N_samples = 64
opt.inference.identities = 1
# Load saved model
if model_type == 'ffhq':
model_path = 'ffhq1024x1024.pt'
opt.model.size = 1024
opt.experiment.expname = 'ffhq1024x1024'
else:
opt.inference.camera.azim = 0.15
model_path = 'afhq512x512.pt'
opt.model.size = 512
opt.experiment.expname = 'afhq512x512'
opt.inference.size = opt.model.size
# Create results directory
result_model_dir = 'final_model'
results_dir_basename = os.path.join(opt.inference.results_dir, opt.experiment.expname)
opt.inference.results_dst_dir = os.path.join(results_dir_basename, result_model_dir)
os.makedirs(opt.inference.results_dst_dir, exist_ok=True)
os.makedirs(os.path.join(opt.inference.results_dst_dir, 'videos'), exist_ok=True)
checkpoints_dir = './full_models'
checkpoint_path = os.path.join('full_models', model_path)
if os.path.isfile(checkpoint_path):
# define results directory name
result_model_dir = 'final_model'
results_dir_basename = os.path.join(opt.inference.results_dir, opt.experiment.expname)
opt.inference.results_dst_dir = os.path.join(results_dir_basename, result_model_dir, 'videos')
if opt.model.project_noise:
opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'with_noise_projection')
os.makedirs(opt.inference.results_dst_dir, exist_ok=True)
print(checkpoint_path)
# load saved model
checkpoint = torch.load(checkpoint_path)
# load image generation model
g_ema = Generator(opt.model, opt.rendering).to(device)
# temp fix because of wrong noise sizes
pretrained_weights_dict = checkpoint["g_ema"]
model_dict = g_ema.state_dict()
for k, v in pretrained_weights_dict.items():
if v.size() == model_dict[k].size():
model_dict[k] = v
g_ema.load_state_dict(model_dict)
# load a the volume renderee to a second that extracts surfaces at 128x128x128
if not opt.inference.no_surface_renderings or opt.model.project_noise:
opt['surf_extraction'] = Munch()
opt.surf_extraction.rendering = opt.rendering
opt.surf_extraction.model = opt.model.copy()
opt.surf_extraction.model.renderer_spatial_output_dim = 128
opt.surf_extraction.rendering.N_samples = opt.surf_extraction.model.renderer_spatial_output_dim
opt.surf_extraction.rendering.return_xyz = True
opt.surf_extraction.rendering.return_sdf = True
opt.inference.surf_extraction_output_size = opt.surf_extraction.model.renderer_spatial_output_dim
surface_g_ema = Generator(opt.surf_extraction.model, opt.surf_extraction.rendering, full_pipeline=False).to(device)
# Load weights to surface extractor
surface_extractor_dict = surface_g_ema.state_dict()
for k, v in pretrained_weights_dict.items():
if k in surface_extractor_dict.keys() and v.size() == surface_extractor_dict[k].size():
surface_extractor_dict[k] = v
surface_g_ema.load_state_dict(surface_extractor_dict)
else:
surface_g_ema = None
# get the mean latent vector for g_ema
if opt.inference.truncation_ratio < 1:
with torch.no_grad():
mean_latent = g_ema.mean_latent(opt.inference.truncation_mean, device)
else:
mean_latent = None
# get the mean latent vector for surface_g_ema
if not opt.inference.no_surface_renderings or opt.model.project_noise:
surface_mean_latent = mean_latent[0]
else:
surface_mean_latent = None
return opt.inference, g_ema, surface_g_ema, mean_latent, surface_mean_latent,opt.inference.results_dst_dir
def render_video(opt, g_ema, surface_g_ema, device, mean_latent, surface_mean_latent,numberofframes):
g_ema.eval()
if not opt.no_surface_renderings or opt.project_noise:
surface_g_ema.eval()
images = torch.Tensor(0, 3, opt.size, opt.size)
num_frames = numberofframes
# Generate video trajectory
trajectory = np.zeros((num_frames,3), dtype=np.float32)
# set camera trajectory
# sweep azimuth angles (4 seconds)
if opt.azim_video:
t = np.linspace(0, 1, num_frames)
elev = 0
fov = opt.camera.fov
if opt.camera.uniform:
azim = opt.camera.azim * np.cos(t * 2 * np.pi)
else:
azim = 1.5 * opt.camera.azim * np.cos(t * 2 * np.pi)
trajectory[:num_frames,0] = azim
trajectory[:num_frames,1] = elev
trajectory[:num_frames,2] = fov
# elipsoid sweep (4 seconds)
else:
t = np.linspace(0, 1, num_frames)
fov = opt.camera.fov #+ 1 * np.sin(t * 2 * np.pi)
if opt.camera.uniform:
elev = opt.camera.elev / 2 + opt.camera.elev / 2 * np.sin(t * 2 * np.pi)
azim = opt.camera.azim * np.cos(t * 2 * np.pi)
else:
elev = 1.5 * opt.camera.elev * np.sin(t * 2 * np.pi)
azim = 1.5 * opt.camera.azim * np.cos(t * 2 * np.pi)
trajectory[:num_frames,0] = azim
trajectory[:num_frames,1] = elev
trajectory[:num_frames,2] = fov
trajectory = torch.from_numpy(trajectory).to(device)
# generate input parameters for the camera trajectory
# sample_cam_poses, sample_focals, sample_near, sample_far = \
# generate_camera_params(trajectory, opt.renderer_output_size, device, dist_radius=opt.camera.dist_radius)
sample_cam_extrinsics, sample_focals, sample_near, sample_far, _ = \
generate_camera_params(opt.renderer_output_size, device, locations=trajectory[:,:2],
fov_ang=trajectory[:,2:], dist_radius=opt.camera.dist_radius)
# In case of noise projection, generate input parameters for the frontal position.
# The reference mesh for the noise projection is extracted from the frontal position.
# For more details see section C.1 in the supplementary material.
if opt.project_noise:
frontal_pose = torch.tensor([[0.0,0.0,opt.camera.fov]]).to(device)
# frontal_cam_pose, frontal_focals, frontal_near, frontal_far = \
# generate_camera_params(frontal_pose, opt.surf_extraction_output_size, device, dist_radius=opt.camera.dist_radius)
frontal_cam_pose, frontal_focals, frontal_near, frontal_far, _ = \
generate_camera_params(opt.surf_extraction_output_size, device, location=frontal_pose[:,:2],
fov_ang=frontal_pose[:,2:], dist_radius=opt.camera.dist_radius)
# create geometry renderer (renders the depth maps)
cameras = create_cameras(azim=np.rad2deg(trajectory[0,0].cpu().numpy()),
elev=np.rad2deg(trajectory[0,1].cpu().numpy()),
dist=1, device=device)
renderer = create_mesh_renderer(cameras, image_size=512, specular_color=((0,0,0),),
ambient_color=((0.1,.1,.1),), diffuse_color=((0.75,.75,.75),),
device=device)
suffix = '_azim' if opt.azim_video else '_elipsoid'
# generate videos
for i in range(opt.identities):
print('Processing identity {}/{}...'.format(i+1, opt.identities))
chunk = 1
sample_z = torch.randn(1, opt.style_dim, device=device).repeat(chunk,1)
video_filename = 'sample_video_{}{}.mp4'.format(i,suffix)
writer = skvideo.io.FFmpegWriter(os.path.join(opt.results_dst_dir, video_filename),
outputdict={'-pix_fmt': 'yuv420p', '-crf': '10'})
if not opt.no_surface_renderings:
depth_video_filename = 'sample_depth_video_{}{}.mp4'.format(i,suffix)
depth_writer = skvideo.io.FFmpegWriter(os.path.join(opt.results_dst_dir, depth_video_filename),
outputdict={'-pix_fmt': 'yuv420p', '-crf': '1'})
####################### Extract initial surface mesh from the frontal viewpoint #############
# For more details see section C.1 in the supplementary material.
if opt.project_noise:
with torch.no_grad():
frontal_surface_out = surface_g_ema([sample_z],
frontal_cam_pose,
frontal_focals,
frontal_near,
frontal_far,
truncation=opt.truncation_ratio,
truncation_latent=surface_mean_latent,
return_sdf=True)
frontal_sdf = frontal_surface_out[2].cpu()
print('Extracting Identity {} Frontal view Marching Cubes for consistent video rendering'.format(i))
frostum_aligned_frontal_sdf = align_volume(frontal_sdf)
del frontal_sdf
try:
frontal_marching_cubes_mesh = extract_mesh_with_marching_cubes(frostum_aligned_frontal_sdf)
except ValueError:
frontal_marching_cubes_mesh = None
if frontal_marching_cubes_mesh != None:
frontal_marching_cubes_mesh_filename = os.path.join(opt.results_dst_dir,'sample_{}_frontal_marching_cubes_mesh{}.obj'.format(i,suffix))
with open(frontal_marching_cubes_mesh_filename, 'w') as f:
frontal_marching_cubes_mesh.export(f,file_type='obj')
del frontal_surface_out
torch.cuda.empty_cache()
#############################################################################################
for j in tqdm(range(0, num_frames, chunk)):
with torch.no_grad():
out = g_ema([sample_z],
sample_cam_extrinsics[j:j+chunk],
sample_focals[j:j+chunk],
sample_near[j:j+chunk],
sample_far[j:j+chunk],
truncation=opt.truncation_ratio,
truncation_latent=mean_latent,
randomize_noise=False,
project_noise=opt.project_noise,
mesh_path=frontal_marching_cubes_mesh_filename if opt.project_noise else None)
rgb = out[0].cpu()
utils.save_image(rgb,
os.path.join(opt.results_dst_dir, '{}.png'.format(str(i).zfill(7))),
nrow= trajectory[:,:2].shape[0],
normalize=True,
padding=0,
value_range=(-1, 1),)
# this is done to fit to RTX2080 RAM size (11GB)
del out
torch.cuda.empty_cache()
# Convert RGB from [-1, 1] to [0,255]
rgb = 127.5 * (rgb.clamp(-1,1).permute(0,2,3,1).cpu().numpy() + 1)
# Add RGB, frame to video
for k in range(chunk):
writer.writeFrame(rgb[k])
########## Extract surface ##########
if not opt.no_surface_renderings:
scale = surface_g_ema.renderer.out_im_res / g_ema.renderer.out_im_res
surface_sample_focals = sample_focals * scale
surface_out = surface_g_ema([sample_z],
sample_cam_extrinsics[j:j+chunk],
surface_sample_focals[j:j+chunk],
sample_near[j:j+chunk],
sample_far[j:j+chunk],
truncation=opt.truncation_ratio,
truncation_latent=surface_mean_latent,
return_xyz=True)
xyz = surface_out[2].cpu()
# this is done to fit to RTX2080 RAM size (11GB)
del surface_out
torch.cuda.empty_cache()
# Render mesh for video
depth_mesh = xyz2mesh(xyz)
mesh = Meshes(
verts=[torch.from_numpy(np.asarray(depth_mesh.vertices)).to(torch.float32).to(device)],
faces = [torch.from_numpy(np.asarray(depth_mesh.faces)).to(torch.float32).to(device)],
textures=None,
verts_normals=[torch.from_numpy(np.copy(np.asarray(depth_mesh.vertex_normals))).to(torch.float32).to(device)],
)
mesh = add_textures(mesh)
cameras = create_cameras(azim=np.rad2deg(trajectory[j,0].cpu().numpy()),
elev=np.rad2deg(trajectory[j,1].cpu().numpy()),
fov=2*trajectory[j,2].cpu().numpy(),
dist=1, device=device)
renderer = create_mesh_renderer(cameras, image_size=512,
light_location=((0.0,1.0,5.0),), specular_color=((0.2,0.2,0.2),),
ambient_color=((0.1,0.1,0.1),), diffuse_color=((0.65,.65,.65),),
device=device)
mesh_image = 255 * renderer(mesh).cpu().numpy()
mesh_image = mesh_image[...,:3]
# Add depth frame to video
for k in range(chunk):
depth_writer.writeFrame(mesh_image[k])
# Close video writers
writer.close()
if not opt.no_surface_renderings:
depth_writer.close()
return video_filename
import gradio as gr
import plotly.graph_objects as go
from PIL import Image
device='cuda' if torch.cuda.is_available() else 'cpu'
def get_video(model_type,numberofframes,mesh_type):
options,g_ema,surface_g_ema, mean_latent, surface_mean_latent,result_filename=get_rendervideo_vars(model_type,numberofframes)
render_video(options, g_ema, surface_g_ema, device, mean_latent, surface_mean_latent,numberofframes)
torch.cuda.empty_cache()
del options,g_ema,surface_g_ema, mean_latent, surface_mean_latent
path_img=os.path.join(result_filename,"0000000.png")
image=Image.open(path_img)
if mesh_type=="DepthMesh":
path=os.path.join(result_filename,"sample_depth_video_0_elipsoid.mp4")
else:
path=os.path.join(result_filename,"sample_video_0_elipsoid.mp4")
return path,image
def get_mesh(model_type,mesh_type):
options,g_ema,surface_g_ema, mean_latent, surface_mean_latent,result_filename=get_generate_vars(model_type)
depth_mesh,mc_mesh=generate(options, g_ema, surface_g_ema, device, mean_latent, surface_mean_latent)
torch.cuda.empty_cache()
del options,g_ema,surface_g_ema, mean_latent, surface_mean_latent
if mesh_type=="DepthMesh":
mesh=depth_mesh
else:
mesh=mc_mesh
x=np.asarray(mesh.vertices).T[0]
y=np.asarray(mesh.vertices).T[1]
z=np.asarray(mesh.vertices).T[2]
i=np.asarray(mesh.faces).T[0]
j=np.asarray(mesh.faces).T[1]
k=np.asarray(mesh.faces).T[2]
fig = go.Figure(go.Mesh3d(x=x, y=y, z=z,
i=i, j=j, k=k,
colorscale="Viridis",
colorbar_len=0.75,
flatshading=True,
lighting=dict(ambient=0.5,
diffuse=1,
fresnel=4,
specular=0.5,
roughness=0.05,
facenormalsepsilon=0,
vertexnormalsepsilon=0),
lightposition=dict(x=100,
y=100,
z=1000)))
path=os.path.join(result_filename,"images/0000000.png")
image=Image.open(path)
return fig,image
markdown=f'''
# StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation
[The space demo for the CVPR 2022 paper "StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation".](https://arxiv.org/abs/2112.11427)
[For the official implementation.](https://github.com/royorel/StyleSDF)
### Future Work based on interest
- Adding new models for new type objects
- New Customization
It is running on {device}
The process can take long time.Especially ,To generate videos and the time of process depends the number of frames and current compiler device.
Note : For RGB video , choose marching cubes mesh type
'''
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown(markdown)
with gr.Column():
with gr.Row():
with gr.Column():
image=gr.Image(type="pil",shape=(512,512))
with gr.Column():
mesh = gr.Plot()
with gr.Column():
video=gr.Video()
with gr.Row():
numberoframes = gr.Slider( minimum=30, maximum=250,label='Number Of Frame For Video Generation')
model_name=gr.Dropdown(choices=["ffhq","afhq"],label="Choose Model Type")
mesh_type=gr.Dropdown(choices=["DepthMesh","Marching Cubes"],label="Choose Mesh Type")
with gr.Row():
btn = gr.Button(value="Generate Mesh")
btn_2=gr.Button(value="Generate Video")
btn.click(get_mesh, [model_name,mesh_type],[ mesh,image])
btn_2.click(get_video,[model_name,numberoframes,mesh_type],[video,image])
demo.launch(debug=True)
|