File size: 31,040 Bytes
594d040
 
 
 
 
 
 
db078b4
594d040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

import sys
import os 

os.system("git clone https://github.com/royorel/StyleSDF.git")
sys.path.append("StyleSDF")



os.system(f"{sys.executable} -m pip install -U fvcore")

import torch
pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
version_str="".join([
    f"py3{sys.version_info.minor}_cu",
    torch.version.cuda.replace(".",""),
    f"_pyt{pyt_version_str}"
])

os.system(f"{sys.executable} -m pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html")

from  download_models import download_pretrained_models

download_pretrained_models()


import torch
import trimesh
import numpy as np
from munch import *
from PIL import Image
from tqdm import tqdm
from torch.nn import functional as F
from torch.utils import data
from torchvision import utils
from torchvision import transforms
from skimage.measure import marching_cubes
from scipy.spatial import Delaunay
from options import BaseOptions
from model import Generator
from utils import (
    generate_camera_params,
    align_volume,
    extract_mesh_with_marching_cubes,
    xyz2mesh,
)
from utils import (
    generate_camera_params, align_volume, extract_mesh_with_marching_cubes,
    xyz2mesh, create_cameras, create_mesh_renderer, add_textures,
    )
from pytorch3d.structures import Meshes
from pdb import set_trace as st
import skvideo.io

def generate(opt, g_ema, surface_g_ema, device, mean_latent, surface_mean_latent):
    g_ema.eval()
    if not opt.no_surface_renderings:
        surface_g_ema.eval()

    # set camera angles
    if opt.fixed_camera_angles:
        # These can be changed to any other specific viewpoints.
        # You can add or remove viewpoints as you wish
        locations = torch.tensor([[0, 0],
                                  [-1.5 * opt.camera.azim, 0],
                                  [-1 * opt.camera.azim, 0],
                                  [-0.5 * opt.camera.azim, 0],
                                  [0.5 * opt.camera.azim, 0],
                                  [1 * opt.camera.azim, 0],
                                  [1.5 * opt.camera.azim, 0],
                                  [0, -1.5 * opt.camera.elev],
                                  [0, -1 * opt.camera.elev],
                                  [0, -0.5 * opt.camera.elev],
                                  [0, 0.5 * opt.camera.elev],
                                  [0, 1 * opt.camera.elev],
                                  [0, 1.5 * opt.camera.elev]], device=device)
        # For zooming in/out change the values of fov
        # (This can be defined for each view separately via a custom tensor
        # like the locations tensor above. Tensor shape should be [locations.shape[0],1])
        # reasonable values are [0.75 * opt.camera.fov, 1.25 * opt.camera.fov]
        fov = opt.camera.fov * torch.ones((locations.shape[0],1), device=device)
        num_viewdirs = locations.shape[0]
    else: # draw random camera angles
        locations = None
        # fov = None
        fov = opt.camera.fov
        num_viewdirs = opt.num_views_per_id

    # generate images
    for i in tqdm(range(opt.identities)):
        with torch.no_grad():
            chunk = 8
            sample_z = torch.randn(1, opt.style_dim, device=device).repeat(num_viewdirs,1)
            sample_cam_extrinsics, sample_focals, sample_near, sample_far, sample_locations = \
            generate_camera_params(opt.renderer_output_size, device, batch=num_viewdirs,
                                   locations=locations, #input_fov=fov,
                                   uniform=opt.camera.uniform, azim_range=opt.camera.azim,
                                   elev_range=opt.camera.elev, fov_ang=fov,
                                   dist_radius=opt.camera.dist_radius)
            rgb_images = torch.Tensor(0, 3, opt.size, opt.size)
            rgb_images_thumbs = torch.Tensor(0, 3, opt.renderer_output_size, opt.renderer_output_size)
            for j in range(0, num_viewdirs, chunk):
                out = g_ema([sample_z[j:j+chunk]],
                            sample_cam_extrinsics[j:j+chunk],
                            sample_focals[j:j+chunk],
                            sample_near[j:j+chunk],
                            sample_far[j:j+chunk],
                            truncation=opt.truncation_ratio,
                            truncation_latent=mean_latent)

                rgb_images = torch.cat([rgb_images, out[0].cpu()], 0)
                rgb_images_thumbs = torch.cat([rgb_images_thumbs, out[1].cpu()], 0)

            utils.save_image(rgb_images,
                os.path.join(opt.results_dst_dir, 'images','{}.png'.format(str(i).zfill(7))),
                nrow=num_viewdirs,
                normalize=True,
                padding=0,
                value_range=(-1, 1),)

            utils.save_image(rgb_images_thumbs,
                os.path.join(opt.results_dst_dir, 'images','{}_thumb.png'.format(str(i).zfill(7))),
                nrow=num_viewdirs,
                normalize=True,
                padding=0,
                value_range=(-1, 1),)

            # this is done to fit to RTX2080 RAM size (11GB)
            del out
            torch.cuda.empty_cache()

            if not opt.no_surface_renderings:
                surface_chunk = 1
                scale = surface_g_ema.renderer.out_im_res / g_ema.renderer.out_im_res
                surface_sample_focals = sample_focals * scale
                for j in range(0, num_viewdirs, surface_chunk):
                    surface_out = surface_g_ema([sample_z[j:j+surface_chunk]],
                                                sample_cam_extrinsics[j:j+surface_chunk],
                                                surface_sample_focals[j:j+surface_chunk],
                                                sample_near[j:j+surface_chunk],
                                                sample_far[j:j+surface_chunk],
                                                truncation=opt.truncation_ratio,
                                                truncation_latent=surface_mean_latent,
                                                return_sdf=True,
                                                return_xyz=True)

                    xyz = surface_out[2].cpu()
                    sdf = surface_out[3].cpu()

                    # this is done to fit to RTX2080 RAM size (11GB)
                    del surface_out
                    torch.cuda.empty_cache()

                    # mesh extractions are done one at a time
                    for k in range(surface_chunk):
                        curr_locations = sample_locations[j:j+surface_chunk]
                        loc_str = '_azim{}_elev{}'.format(int(curr_locations[k,0] * 180 / np.pi),
                                                          int(curr_locations[k,1] * 180 / np.pi))

                        # Save depth outputs as meshes
                        depth_mesh_filename = os.path.join(opt.results_dst_dir,'depth_map_meshes','sample_{}_depth_mesh{}.obj'.format(i, loc_str))
                        depth_mesh = xyz2mesh(xyz[k:k+surface_chunk])
                        if depth_mesh != None:
                            with open(depth_mesh_filename, 'w') as f:
                                depth_mesh.export(f,file_type='obj')

                        # extract full geometry with marching cubes
                        if j == 0:
                            try:
                                frostum_aligned_sdf = align_volume(sdf)
                                marching_cubes_mesh = extract_mesh_with_marching_cubes(frostum_aligned_sdf[k:k+surface_chunk])
                            except ValueError:
                                marching_cubes_mesh = None
                                print('Marching cubes extraction failed.')
                                print('Please check whether the SDF values are all larger (or all smaller) than 0.')
                        return depth_mesh,marching_cubes_mesh
                    

                    
# User options


def get_generate_vars(model_type):

  opt = BaseOptions().parse()
  opt.camera.uniform = True
  opt.model.is_test = True
  opt.model.freeze_renderer = False
  opt.rendering.offset_sampling = True
  opt.rendering.static_viewdirs = True
  opt.rendering.force_background = True
  opt.rendering.perturb = 0
  opt.inference.renderer_output_size = opt.model.renderer_spatial_output_dim
  opt.inference.style_dim = opt.model.style_dim
  opt.inference.project_noise = opt.model.project_noise

  # User options
  opt.inference.no_surface_renderings = False # When true, only RGB images will be created
  opt.inference.fixed_camera_angles = False # When true, each identity will be rendered from a specific set of 13 viewpoints. Otherwise, random views are generated
  opt.inference.identities = 1 # Number of identities to generate
  opt.inference.num_views_per_id = 1 # Number of viewpoints generated per identity. This option is ignored if opt.inference.fixed_camera_angles is true.
  opt.inference.camera = opt.camera

  # Load saved model
  if model_type == 'ffhq':
      model_path = 'ffhq1024x1024.pt'
      opt.model.size = 1024
      opt.experiment.expname = 'ffhq1024x1024'
  else:
      opt.inference.camera.azim = 0.15
      model_path = 'afhq512x512.pt'
      opt.model.size = 512
      opt.experiment.expname = 'afhq512x512'

  # Create results directory
  result_model_dir = 'final_model'
  results_dir_basename = os.path.join(opt.inference.results_dir, opt.experiment.expname)
  opt.inference.results_dst_dir = os.path.join(results_dir_basename, result_model_dir)
  if opt.inference.fixed_camera_angles:
      opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'fixed_angles')
  else:
      opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'random_angles')

  os.makedirs(opt.inference.results_dst_dir, exist_ok=True)
  os.makedirs(os.path.join(opt.inference.results_dst_dir, 'images'), exist_ok=True)


  if not opt.inference.no_surface_renderings:
      os.makedirs(os.path.join(opt.inference.results_dst_dir, 'depth_map_meshes'), exist_ok=True)
      os.makedirs(os.path.join(opt.inference.results_dst_dir, 'marching_cubes_meshes'), exist_ok=True)

  opt.inference.size = opt.model.size
  checkpoint_path = os.path.join('full_models', model_path)
  checkpoint = torch.load(checkpoint_path)

  # Load image generation model
  g_ema = Generator(opt.model, opt.rendering).to(device)
  pretrained_weights_dict = checkpoint["g_ema"]
  model_dict = g_ema.state_dict()
  for k, v in pretrained_weights_dict.items():
      if v.size() == model_dict[k].size():
          model_dict[k] = v

  g_ema.load_state_dict(model_dict)

  # Load a second volume renderer that extracts surfaces at 128x128x128 (or higher) for better surface resolution
  if not opt.inference.no_surface_renderings:
      opt['surf_extraction'] = Munch()
      opt.surf_extraction.rendering = opt.rendering
      opt.surf_extraction.model = opt.model.copy()
      opt.surf_extraction.model.renderer_spatial_output_dim = 128
      opt.surf_extraction.rendering.N_samples = opt.surf_extraction.model.renderer_spatial_output_dim
      opt.surf_extraction.rendering.return_xyz = True
      opt.surf_extraction.rendering.return_sdf = True
      surface_g_ema = Generator(opt.surf_extraction.model, opt.surf_extraction.rendering, full_pipeline=False).to(device)


      # Load weights to surface extractor
      surface_extractor_dict = surface_g_ema.state_dict()
      for k, v in pretrained_weights_dict.items():
          if k in surface_extractor_dict.keys() and v.size() == surface_extractor_dict[k].size():
              surface_extractor_dict[k] = v

      surface_g_ema.load_state_dict(surface_extractor_dict)
  else:
      surface_g_ema = None

  # Get the mean latent vector for g_ema
  if opt.inference.truncation_ratio < 1:
      with torch.no_grad():
          mean_latent = g_ema.mean_latent(opt.inference.truncation_mean, device)
  else:
      surface_mean_latent = None

  # Get the mean latent vector for surface_g_ema
  if not opt.inference.no_surface_renderings:
      surface_mean_latent = mean_latent[0]
  else:
      surface_mean_latent = None

  return opt.inference, g_ema, surface_g_ema, mean_latent, surface_mean_latent,opt.inference.results_dst_dir



def get_rendervideo_vars(model_type,number_frames):
    opt = BaseOptions().parse()
    opt.model.is_test = True
    opt.model.style_dim = 256
    opt.model.freeze_renderer = False
    opt.inference.size = opt.model.size
    opt.inference.camera = opt.camera
    opt.inference.renderer_output_size = opt.model.renderer_spatial_output_dim
    opt.inference.style_dim = opt.model.style_dim
    opt.inference.project_noise = opt.model.project_noise
    opt.rendering.perturb = 0
    opt.rendering.force_background = True
    opt.rendering.static_viewdirs = True
    opt.rendering.return_sdf = True
    opt.rendering.N_samples = 64
    opt.inference.identities = 1

      # Load saved model
    if model_type == 'ffhq':
        model_path = 'ffhq1024x1024.pt'
        opt.model.size = 1024
        opt.experiment.expname = 'ffhq1024x1024'
    else:
        opt.inference.camera.azim = 0.15
        model_path = 'afhq512x512.pt'
        opt.model.size = 512
        opt.experiment.expname = 'afhq512x512'

    opt.inference.size = opt.model.size

    # Create results directory
    result_model_dir = 'final_model'
    results_dir_basename = os.path.join(opt.inference.results_dir, opt.experiment.expname)
    
    opt.inference.results_dst_dir = os.path.join(results_dir_basename, result_model_dir)


    os.makedirs(opt.inference.results_dst_dir, exist_ok=True)
    os.makedirs(os.path.join(opt.inference.results_dst_dir, 'videos'), exist_ok=True)

    checkpoints_dir = './full_models'
    checkpoint_path = os.path.join('full_models', model_path)

    if os.path.isfile(checkpoint_path):
        # define results directory name
        result_model_dir = 'final_model'


    results_dir_basename = os.path.join(opt.inference.results_dir, opt.experiment.expname)
    opt.inference.results_dst_dir = os.path.join(results_dir_basename, result_model_dir, 'videos')
    if opt.model.project_noise:
        opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'with_noise_projection')

    os.makedirs(opt.inference.results_dst_dir, exist_ok=True)
    print(checkpoint_path)
    # load saved model
    checkpoint = torch.load(checkpoint_path)

    # load image generation model
    g_ema = Generator(opt.model, opt.rendering).to(device)

    # temp fix because of wrong noise sizes
    pretrained_weights_dict = checkpoint["g_ema"]
    model_dict = g_ema.state_dict()
    for k, v in pretrained_weights_dict.items():
        if v.size() == model_dict[k].size():
            model_dict[k] = v

    g_ema.load_state_dict(model_dict)

    # load a the volume renderee to a second that extracts surfaces at 128x128x128
    if not opt.inference.no_surface_renderings or opt.model.project_noise:
        opt['surf_extraction'] = Munch()
        opt.surf_extraction.rendering = opt.rendering
        opt.surf_extraction.model = opt.model.copy()
        opt.surf_extraction.model.renderer_spatial_output_dim = 128
        opt.surf_extraction.rendering.N_samples = opt.surf_extraction.model.renderer_spatial_output_dim
        opt.surf_extraction.rendering.return_xyz = True
        opt.surf_extraction.rendering.return_sdf = True
        opt.inference.surf_extraction_output_size = opt.surf_extraction.model.renderer_spatial_output_dim
        surface_g_ema = Generator(opt.surf_extraction.model, opt.surf_extraction.rendering, full_pipeline=False).to(device)


        # Load weights to surface extractor
        surface_extractor_dict = surface_g_ema.state_dict()
        for k, v in pretrained_weights_dict.items():
            if k in surface_extractor_dict.keys() and v.size() == surface_extractor_dict[k].size():
                surface_extractor_dict[k] = v

        surface_g_ema.load_state_dict(surface_extractor_dict)
    else:
        surface_g_ema = None

    # get the mean latent vector for g_ema
    if opt.inference.truncation_ratio < 1:
        with torch.no_grad():
            mean_latent = g_ema.mean_latent(opt.inference.truncation_mean, device)
    else:
        mean_latent = None

    # get the mean latent vector for surface_g_ema
    if not opt.inference.no_surface_renderings or opt.model.project_noise:
        surface_mean_latent = mean_latent[0]
    else:
        surface_mean_latent = None

    return opt.inference, g_ema, surface_g_ema, mean_latent, surface_mean_latent,opt.inference.results_dst_dir




def render_video(opt, g_ema, surface_g_ema, device, mean_latent, surface_mean_latent,numberofframes):
    g_ema.eval()
    if not opt.no_surface_renderings or opt.project_noise:
        surface_g_ema.eval()

    images = torch.Tensor(0, 3, opt.size, opt.size)
    num_frames = numberofframes
    # Generate video trajectory
    trajectory = np.zeros((num_frames,3), dtype=np.float32)

    # set camera trajectory
    # sweep azimuth angles (4 seconds)
    if opt.azim_video:
        t = np.linspace(0, 1, num_frames)
        elev = 0
        fov = opt.camera.fov
        if opt.camera.uniform:
            azim = opt.camera.azim * np.cos(t * 2 * np.pi)
        else:
            azim = 1.5 * opt.camera.azim * np.cos(t * 2 * np.pi)

        trajectory[:num_frames,0] = azim
        trajectory[:num_frames,1] = elev
        trajectory[:num_frames,2] = fov

    # elipsoid sweep (4 seconds)
    else:
        t = np.linspace(0, 1, num_frames)
        fov = opt.camera.fov #+ 1 * np.sin(t * 2 * np.pi)
        if opt.camera.uniform:
            elev = opt.camera.elev / 2 + opt.camera.elev / 2  * np.sin(t * 2 * np.pi)
            azim = opt.camera.azim  * np.cos(t * 2 * np.pi)
        else:
            elev = 1.5 * opt.camera.elev * np.sin(t * 2 * np.pi)
            azim = 1.5 * opt.camera.azim * np.cos(t * 2 * np.pi)

        trajectory[:num_frames,0] = azim
        trajectory[:num_frames,1] = elev
        trajectory[:num_frames,2] = fov

    trajectory = torch.from_numpy(trajectory).to(device)

    # generate input parameters for the camera trajectory
    # sample_cam_poses, sample_focals, sample_near, sample_far = \
    # generate_camera_params(trajectory, opt.renderer_output_size, device, dist_radius=opt.camera.dist_radius)


    sample_cam_extrinsics, sample_focals, sample_near, sample_far, _ = \
    generate_camera_params(opt.renderer_output_size, device, locations=trajectory[:,:2],
                           fov_ang=trajectory[:,2:], dist_radius=opt.camera.dist_radius)


    # In case of noise projection, generate input parameters for the frontal position.
    # The reference mesh for the noise projection is extracted from the frontal position.
    # For more details see section C.1 in the supplementary material.
    if opt.project_noise:
        frontal_pose = torch.tensor([[0.0,0.0,opt.camera.fov]]).to(device)
        # frontal_cam_pose, frontal_focals, frontal_near, frontal_far = \
        # generate_camera_params(frontal_pose, opt.surf_extraction_output_size, device, dist_radius=opt.camera.dist_radius)
        frontal_cam_pose, frontal_focals, frontal_near, frontal_far, _ = \
        generate_camera_params(opt.surf_extraction_output_size, device, location=frontal_pose[:,:2],
                               fov_ang=frontal_pose[:,2:], dist_radius=opt.camera.dist_radius)

    # create geometry renderer (renders the depth maps)
    cameras = create_cameras(azim=np.rad2deg(trajectory[0,0].cpu().numpy()),
                             elev=np.rad2deg(trajectory[0,1].cpu().numpy()),
                             dist=1, device=device)
    renderer = create_mesh_renderer(cameras, image_size=512, specular_color=((0,0,0),),
                    ambient_color=((0.1,.1,.1),), diffuse_color=((0.75,.75,.75),),
                    device=device)

    suffix = '_azim' if opt.azim_video else '_elipsoid'

    # generate videos
    for i in range(opt.identities):
        print('Processing identity {}/{}...'.format(i+1, opt.identities))
        chunk = 1
        sample_z = torch.randn(1, opt.style_dim, device=device).repeat(chunk,1)
        video_filename = 'sample_video_{}{}.mp4'.format(i,suffix)
        writer = skvideo.io.FFmpegWriter(os.path.join(opt.results_dst_dir, video_filename),
                                         outputdict={'-pix_fmt': 'yuv420p', '-crf': '10'})
        if not opt.no_surface_renderings:
            depth_video_filename = 'sample_depth_video_{}{}.mp4'.format(i,suffix)
            depth_writer = skvideo.io.FFmpegWriter(os.path.join(opt.results_dst_dir, depth_video_filename),
                                             outputdict={'-pix_fmt': 'yuv420p', '-crf': '1'})


        ####################### Extract initial surface mesh from the frontal viewpoint #############
        # For more details see section C.1 in the supplementary material.
        if opt.project_noise:
            with torch.no_grad():
                frontal_surface_out = surface_g_ema([sample_z],
                                                    frontal_cam_pose,
                                                    frontal_focals,
                                                    frontal_near,
                                                    frontal_far,
                                                    truncation=opt.truncation_ratio,
                                                    truncation_latent=surface_mean_latent,
                                                    return_sdf=True)
                frontal_sdf = frontal_surface_out[2].cpu()

            print('Extracting Identity {} Frontal view Marching Cubes for consistent video rendering'.format(i))

            frostum_aligned_frontal_sdf = align_volume(frontal_sdf)
            del frontal_sdf

            try:
                frontal_marching_cubes_mesh = extract_mesh_with_marching_cubes(frostum_aligned_frontal_sdf)
            except ValueError:
                frontal_marching_cubes_mesh = None

            if frontal_marching_cubes_mesh != None:
                frontal_marching_cubes_mesh_filename = os.path.join(opt.results_dst_dir,'sample_{}_frontal_marching_cubes_mesh{}.obj'.format(i,suffix))
                with open(frontal_marching_cubes_mesh_filename, 'w') as f:
                    frontal_marching_cubes_mesh.export(f,file_type='obj')

            del frontal_surface_out
            torch.cuda.empty_cache()
        #############################################################################################

        for j in tqdm(range(0, num_frames, chunk)):
            with torch.no_grad():
                out = g_ema([sample_z],
                            sample_cam_extrinsics[j:j+chunk],
                            sample_focals[j:j+chunk],
                            sample_near[j:j+chunk],
                            sample_far[j:j+chunk],
                            truncation=opt.truncation_ratio,
                            truncation_latent=mean_latent,
                            randomize_noise=False,
                            project_noise=opt.project_noise,
                            mesh_path=frontal_marching_cubes_mesh_filename if opt.project_noise else None)

                rgb = out[0].cpu()
                utils.save_image(rgb,
                    os.path.join(opt.results_dst_dir, '{}.png'.format(str(i).zfill(7))),
                    nrow= trajectory[:,:2].shape[0],
                    normalize=True,
                    padding=0,
                    value_range=(-1, 1),)

                # this is done to fit to RTX2080 RAM size (11GB)
                del out
                torch.cuda.empty_cache()

                # Convert RGB from [-1, 1] to [0,255]
                rgb = 127.5 * (rgb.clamp(-1,1).permute(0,2,3,1).cpu().numpy() + 1)

                # Add RGB, frame to video
                for k in range(chunk):
                    writer.writeFrame(rgb[k])

                ########## Extract surface ##########
                if not opt.no_surface_renderings:
                    scale = surface_g_ema.renderer.out_im_res / g_ema.renderer.out_im_res
                    surface_sample_focals = sample_focals * scale
                    surface_out = surface_g_ema([sample_z],
                                                sample_cam_extrinsics[j:j+chunk],
                                                surface_sample_focals[j:j+chunk],
                                                sample_near[j:j+chunk],
                                                sample_far[j:j+chunk],
                                                truncation=opt.truncation_ratio,
                                                truncation_latent=surface_mean_latent,
                                                return_xyz=True)
                    xyz = surface_out[2].cpu()

                    # this is done to fit to RTX2080 RAM size (11GB)
                    del surface_out
                    torch.cuda.empty_cache()

                    # Render mesh for video
                    depth_mesh = xyz2mesh(xyz)
                    mesh = Meshes(
                        verts=[torch.from_numpy(np.asarray(depth_mesh.vertices)).to(torch.float32).to(device)],
                        faces = [torch.from_numpy(np.asarray(depth_mesh.faces)).to(torch.float32).to(device)],
                        textures=None,
                        verts_normals=[torch.from_numpy(np.copy(np.asarray(depth_mesh.vertex_normals))).to(torch.float32).to(device)],
                    )
                    mesh = add_textures(mesh)
                    cameras = create_cameras(azim=np.rad2deg(trajectory[j,0].cpu().numpy()),
                                             elev=np.rad2deg(trajectory[j,1].cpu().numpy()),
                                             fov=2*trajectory[j,2].cpu().numpy(),
                                             dist=1, device=device)
                    renderer = create_mesh_renderer(cameras, image_size=512,
                                                    light_location=((0.0,1.0,5.0),), specular_color=((0.2,0.2,0.2),),
                                                    ambient_color=((0.1,0.1,0.1),), diffuse_color=((0.65,.65,.65),),
                                                    device=device)

                    mesh_image = 255 * renderer(mesh).cpu().numpy()
                    mesh_image = mesh_image[...,:3]

                    # Add depth frame to video
                    for k in range(chunk):
                        depth_writer.writeFrame(mesh_image[k])

        # Close video writers
        writer.close()
        if not opt.no_surface_renderings:
            depth_writer.close()

        return video_filename
    
    
import gradio as gr
import plotly.graph_objects as go
from PIL import Image

device='cuda' if torch.cuda.is_available() else 'cpu'


def get_video(model_type,numberofframes,mesh_type):
    options,g_ema,surface_g_ema,  mean_latent, surface_mean_latent,result_filename=get_rendervideo_vars(model_type,numberofframes)
    render_video(options, g_ema, surface_g_ema, device, mean_latent, surface_mean_latent,numberofframes)
    torch.cuda.empty_cache()
    del options,g_ema,surface_g_ema,  mean_latent, surface_mean_latent
    path_img=os.path.join(result_filename,"0000000.png")
    image=Image.open(path_img)

    if mesh_type=="DepthMesh":
      path=os.path.join(result_filename,"sample_depth_video_0_elipsoid.mp4")
    else:
      path=os.path.join(result_filename,"sample_video_0_elipsoid.mp4")

    return path,image

def get_mesh(model_type,mesh_type):
    options,g_ema,surface_g_ema,  mean_latent, surface_mean_latent,result_filename=get_generate_vars(model_type)
    depth_mesh,mc_mesh=generate(options, g_ema, surface_g_ema, device, mean_latent, surface_mean_latent)
    torch.cuda.empty_cache()
    del options,g_ema,surface_g_ema,  mean_latent, surface_mean_latent
    if mesh_type=="DepthMesh":
      mesh=depth_mesh
    else:
      mesh=mc_mesh

    x=np.asarray(mesh.vertices).T[0]
    y=np.asarray(mesh.vertices).T[1]
    z=np.asarray(mesh.vertices).T[2]

    i=np.asarray(mesh.faces).T[0]
    j=np.asarray(mesh.faces).T[1]
    k=np.asarray(mesh.faces).T[2]
    fig = go.Figure(go.Mesh3d(x=x, y=y, z=z, 
                    i=i, j=j, k=k, 
                    colorscale="Viridis",
                  colorbar_len=0.75,
                  flatshading=True,
                  lighting=dict(ambient=0.5,
                                diffuse=1,
                                fresnel=4,        
                                specular=0.5,
                                roughness=0.05,
                                facenormalsepsilon=0,
                                vertexnormalsepsilon=0),
                  lightposition=dict(x=100,
                                    y=100,
                                    z=1000)))
    path=os.path.join(result_filename,"images/0000000.png")

    image=Image.open(path)

    return fig,image
    
markdown=f'''
  # StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation

  
  [The space demo for the CVPR 2022 paper "StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation".](https://arxiv.org/abs/2112.11427)
  
  [For the official implementation.](https://github.com/royorel/StyleSDF)

  ### Future Work based on interest
  - Adding new models for new type objects
  - New Customization 
  
  
  It is running on {device}

  The process can take long time.Especially ,To generate videos and the time of process depends the number of frames and current compiler device.

  Note : For RGB video , choose marching cubes mesh type
  
'''
with gr.Blocks() as demo:
    with gr.Row():
      with gr.Column():
        with gr.Row():
            with gr.Column():
              gr.Markdown(markdown)
            with gr.Column():
              with gr.Row():
                with gr.Column():
                      image=gr.Image(type="pil",shape=(512,512))
                with gr.Column():
                      mesh = gr.Plot()
                with gr.Column():
                      video=gr.Video()
    with gr.Row():
      numberoframes = gr.Slider( minimum=30, maximum=250,label='Number Of Frame For Video Generation')
      model_name=gr.Dropdown(choices=["ffhq","afhq"],label="Choose Model Type")
      mesh_type=gr.Dropdown(choices=["DepthMesh","Marching Cubes"],label="Choose Mesh Type")

    with gr.Row():
      btn = gr.Button(value="Generate Mesh")
      btn_2=gr.Button(value="Generate Video")

    btn.click(get_mesh, [model_name,mesh_type],[ mesh,image])
    btn_2.click(get_video,[model_name,numberoframes,mesh_type],[video,image])

demo.launch(debug=True)