Spaces:
Runtime error
Runtime error
History v1
Browse files
app.py
CHANGED
@@ -12,13 +12,17 @@ from PIL import Image, PngImagePlugin
|
|
12 |
from datetime import datetime
|
13 |
from diffusers.models import AutoencoderKL
|
14 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
|
|
|
|
|
|
15 |
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
DESCRIPTION = "PonyDiffusion V6 XL"
|
20 |
if not torch.cuda.is_available():
|
21 |
-
DESCRIPTION += "\n
|
|
|
22 |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
24 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
@@ -27,7 +31,6 @@ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
|
27 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
28 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
29 |
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
30 |
-
|
31 |
MODEL = os.getenv(
|
32 |
"MODEL",
|
33 |
"https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors",
|
@@ -38,6 +41,8 @@ torch.backends.cudnn.benchmark = False
|
|
38 |
|
39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
40 |
|
|
|
|
|
41 |
|
42 |
def load_pipeline(model_name):
|
43 |
vae = AutoencoderKL.from_pretrained(
|
@@ -49,7 +54,6 @@ def load_pipeline(model_name):
|
|
49 |
if MODEL.endswith(".safetensors")
|
50 |
else StableDiffusionXLPipeline.from_pretrained
|
51 |
)
|
52 |
-
|
53 |
pipe = pipeline(
|
54 |
model_name,
|
55 |
vae=vae,
|
@@ -60,11 +64,9 @@ def load_pipeline(model_name):
|
|
60 |
use_auth_token=HF_TOKEN,
|
61 |
variant="fp16",
|
62 |
)
|
63 |
-
|
64 |
pipe.to(device)
|
65 |
return pipe
|
66 |
|
67 |
-
|
68 |
@spaces.GPU
|
69 |
def generate(
|
70 |
prompt: str,
|
@@ -82,20 +84,16 @@ def generate(
|
|
82 |
progress=gr.Progress(track_tqdm=True),
|
83 |
) -> Image:
|
84 |
generator = utils.seed_everything(seed)
|
85 |
-
|
86 |
width, height = utils.aspect_ratio_handler(
|
87 |
-
aspect_ratio_selector,
|
88 |
-
custom_width,
|
89 |
-
custom_height,
|
90 |
)
|
91 |
-
|
92 |
width, height = utils.preprocess_image_dimensions(width, height)
|
93 |
-
|
94 |
backup_scheduler = pipe.scheduler
|
95 |
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
|
96 |
|
97 |
if use_upscaler:
|
98 |
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
|
|
99 |
metadata = {
|
100 |
"prompt": prompt,
|
101 |
"negative_prompt": negative_prompt,
|
@@ -117,6 +115,7 @@ def generate(
|
|
117 |
}
|
118 |
else:
|
119 |
metadata["use_upscaler"] = None
|
|
|
120 |
logger.info(json.dumps(metadata, indent=4))
|
121 |
|
122 |
try:
|
@@ -154,12 +153,34 @@ def generate(
|
|
154 |
output_type="pil",
|
155 |
).images
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
if images and IS_COLAB:
|
158 |
for image in images:
|
159 |
filepath = utils.save_image(image, metadata, OUTPUT_DIR)
|
160 |
logger.info(f"Image saved as {filepath} with metadata")
|
161 |
|
162 |
-
return images, metadata
|
|
|
163 |
except Exception as e:
|
164 |
logger.exception(f"An error occurred: {e}")
|
165 |
raise
|
@@ -169,7 +190,6 @@ def generate(
|
|
169 |
pipe.scheduler = backup_scheduler
|
170 |
utils.free_memory()
|
171 |
|
172 |
-
|
173 |
if torch.cuda.is_available():
|
174 |
pipe = load_pipeline(MODEL)
|
175 |
logger.info("Loaded on Device!")
|
@@ -178,52 +198,32 @@ else:
|
|
178 |
|
179 |
with gr.Blocks(css="style.css") as demo:
|
180 |
title = gr.HTML(
|
181 |
-
f"""<h1
|
182 |
-
elem_id="title",
|
183 |
-
)
|
184 |
-
gr.Markdown(
|
185 |
-
f"""Gradio demo for ([Pony Diffusion V6]https://civitai.com/models/257749/pony-diffusion-v6-xl/)""",
|
186 |
-
elem_id="subtitle",
|
187 |
)
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
)
|
193 |
-
with gr.Group():
|
194 |
-
with gr.Row():
|
195 |
-
prompt = gr.Text(
|
196 |
label="Prompt",
|
197 |
show_label=False,
|
198 |
-
max_lines=
|
199 |
placeholder="Enter your prompt",
|
200 |
-
container=False,
|
201 |
)
|
202 |
-
|
203 |
-
"
|
204 |
-
|
205 |
-
|
|
|
206 |
)
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
max_lines=5,
|
217 |
-
placeholder="Enter a negative prompt",
|
218 |
-
value=""
|
219 |
-
)
|
220 |
-
aspect_ratio_selector = gr.Radio(
|
221 |
-
label="Aspect Ratio",
|
222 |
-
choices=config.aspect_ratios,
|
223 |
-
value="1024 x 1024",
|
224 |
-
container=True,
|
225 |
-
)
|
226 |
-
with gr.Group(visible=False) as custom_resolution:
|
227 |
with gr.Row():
|
228 |
custom_width = gr.Slider(
|
229 |
label="Width",
|
@@ -239,125 +239,126 @@ with gr.Blocks(css="style.css") as demo:
|
|
239 |
step=8,
|
240 |
value=1024,
|
241 |
)
|
242 |
-
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
|
243 |
-
with gr.Row() as upscaler_row:
|
244 |
-
upscaler_strength = gr.Slider(
|
245 |
-
label="Strength",
|
246 |
-
minimum=0,
|
247 |
-
maximum=1,
|
248 |
-
step=0.05,
|
249 |
-
value=0.55,
|
250 |
-
visible=False,
|
251 |
-
)
|
252 |
-
upscale_by = gr.Slider(
|
253 |
-
label="Upscale by",
|
254 |
-
minimum=1,
|
255 |
-
maximum=1.5,
|
256 |
-
step=0.1,
|
257 |
-
value=1.5,
|
258 |
-
visible=False,
|
259 |
-
)
|
260 |
|
261 |
-
sampler = gr.Dropdown(
|
262 |
-
label="Sampler",
|
263 |
-
choices=config.sampler_list,
|
264 |
-
interactive=True,
|
265 |
-
value="DPM++ 2M SDE Karras",
|
266 |
-
)
|
267 |
-
with gr.Row():
|
268 |
-
seed = gr.Slider(
|
269 |
-
label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0
|
270 |
-
)
|
271 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
272 |
-
with gr.Group():
|
273 |
with gr.Row():
|
274 |
guidance_scale = gr.Slider(
|
275 |
-
label="Guidance
|
276 |
-
minimum=1,
|
277 |
-
maximum=12,
|
278 |
-
step=0.1,
|
279 |
-
value=7.0,
|
280 |
)
|
281 |
num_inference_steps = gr.Slider(
|
282 |
-
label="
|
283 |
minimum=1,
|
284 |
-
maximum=
|
285 |
step=1,
|
286 |
-
value=
|
287 |
)
|
288 |
-
with gr.Accordion(label="Generation Parameters", open=False):
|
289 |
-
gr_metadata = gr.JSON(label="Metadata", show_label=False)
|
290 |
-
gr.Examples(
|
291 |
-
examples=config.examples,
|
292 |
-
inputs=prompt,
|
293 |
-
outputs=[result, gr_metadata],
|
294 |
-
fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
|
295 |
-
cache_examples=CACHE_EXAMPLES,
|
296 |
-
)
|
297 |
-
use_upscaler.change(
|
298 |
-
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
|
299 |
-
inputs=use_upscaler,
|
300 |
-
outputs=[upscaler_strength, upscale_by],
|
301 |
-
queue=False,
|
302 |
-
api_name=False,
|
303 |
-
)
|
304 |
-
aspect_ratio_selector.change(
|
305 |
-
fn=lambda x: gr.update(visible=x == "Custom"),
|
306 |
-
inputs=aspect_ratio_selector,
|
307 |
-
outputs=custom_resolution,
|
308 |
-
queue=False,
|
309 |
-
api_name=False,
|
310 |
-
)
|
311 |
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
)
|
363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from datetime import datetime
|
13 |
from diffusers.models import AutoencoderKL
|
14 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
15 |
+
from collections import deque
|
16 |
+
import base64
|
17 |
+
from io import BytesIO
|
18 |
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
DESCRIPTION = "PonyDiffusion V6 XL"
|
23 |
if not torch.cuda.is_available():
|
24 |
+
DESCRIPTION += "\n\nRunning on CPU 🥶 This demo does not work on CPU."
|
25 |
+
|
26 |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
27 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
28 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
|
|
31 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
32 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
33 |
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
|
|
34 |
MODEL = os.getenv(
|
35 |
"MODEL",
|
36 |
"https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors",
|
|
|
41 |
|
42 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
43 |
|
44 |
+
MAX_HISTORY_SIZE = 10
|
45 |
+
image_history = deque(maxlen=MAX_HISTORY_SIZE)
|
46 |
|
47 |
def load_pipeline(model_name):
|
48 |
vae = AutoencoderKL.from_pretrained(
|
|
|
54 |
if MODEL.endswith(".safetensors")
|
55 |
else StableDiffusionXLPipeline.from_pretrained
|
56 |
)
|
|
|
57 |
pipe = pipeline(
|
58 |
model_name,
|
59 |
vae=vae,
|
|
|
64 |
use_auth_token=HF_TOKEN,
|
65 |
variant="fp16",
|
66 |
)
|
|
|
67 |
pipe.to(device)
|
68 |
return pipe
|
69 |
|
|
|
70 |
@spaces.GPU
|
71 |
def generate(
|
72 |
prompt: str,
|
|
|
84 |
progress=gr.Progress(track_tqdm=True),
|
85 |
) -> Image:
|
86 |
generator = utils.seed_everything(seed)
|
|
|
87 |
width, height = utils.aspect_ratio_handler(
|
88 |
+
aspect_ratio_selector, custom_width, custom_height,
|
|
|
|
|
89 |
)
|
|
|
90 |
width, height = utils.preprocess_image_dimensions(width, height)
|
|
|
91 |
backup_scheduler = pipe.scheduler
|
92 |
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
|
93 |
|
94 |
if use_upscaler:
|
95 |
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
96 |
+
|
97 |
metadata = {
|
98 |
"prompt": prompt,
|
99 |
"negative_prompt": negative_prompt,
|
|
|
115 |
}
|
116 |
else:
|
117 |
metadata["use_upscaler"] = None
|
118 |
+
|
119 |
logger.info(json.dumps(metadata, indent=4))
|
120 |
|
121 |
try:
|
|
|
153 |
output_type="pil",
|
154 |
).images
|
155 |
|
156 |
+
if images:
|
157 |
+
for image in images:
|
158 |
+
# Create thumbnail
|
159 |
+
thumbnail = image.copy()
|
160 |
+
thumbnail.thumbnail((256, 256))
|
161 |
+
|
162 |
+
# Convert thumbnail to base64
|
163 |
+
buffered = BytesIO()
|
164 |
+
thumbnail.save(buffered, format="PNG")
|
165 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
166 |
+
|
167 |
+
# Add to history
|
168 |
+
image_history.appendleft({
|
169 |
+
"thumbnail": f"data:image/png;base64,{img_str}",
|
170 |
+
"prompt": prompt,
|
171 |
+
"negative_prompt": negative_prompt,
|
172 |
+
"seed": seed,
|
173 |
+
"width": width,
|
174 |
+
"height": height,
|
175 |
+
})
|
176 |
+
|
177 |
if images and IS_COLAB:
|
178 |
for image in images:
|
179 |
filepath = utils.save_image(image, metadata, OUTPUT_DIR)
|
180 |
logger.info(f"Image saved as {filepath} with metadata")
|
181 |
|
182 |
+
return images, metadata, list(image_history)
|
183 |
+
|
184 |
except Exception as e:
|
185 |
logger.exception(f"An error occurred: {e}")
|
186 |
raise
|
|
|
190 |
pipe.scheduler = backup_scheduler
|
191 |
utils.free_memory()
|
192 |
|
|
|
193 |
if torch.cuda.is_available():
|
194 |
pipe = load_pipeline(MODEL)
|
195 |
logger.info("Loaded on Device!")
|
|
|
198 |
|
199 |
with gr.Blocks(css="style.css") as demo:
|
200 |
title = gr.HTML(
|
201 |
+
f"""<h1>{DESCRIPTION}</h1>"""
|
|
|
|
|
|
|
|
|
|
|
202 |
)
|
203 |
+
|
204 |
+
with gr.Row():
|
205 |
+
with gr.Column(scale=2):
|
206 |
+
prompt = gr.Textbox(
|
|
|
|
|
|
|
|
|
207 |
label="Prompt",
|
208 |
show_label=False,
|
209 |
+
max_lines=2,
|
210 |
placeholder="Enter your prompt",
|
|
|
211 |
)
|
212 |
+
negative_prompt = gr.Textbox(
|
213 |
+
label="Negative Prompt",
|
214 |
+
show_label=False,
|
215 |
+
max_lines=2,
|
216 |
+
placeholder="Enter a negative prompt",
|
217 |
)
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
seed = gr.Number(
|
221 |
+
label="Seed",
|
222 |
+
value=0,
|
223 |
+
precision=0,
|
224 |
+
)
|
225 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
226 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
with gr.Row():
|
228 |
custom_width = gr.Slider(
|
229 |
label="Width",
|
|
|
239 |
step=8,
|
240 |
value=1024,
|
241 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
with gr.Row():
|
244 |
guidance_scale = gr.Slider(
|
245 |
+
label="Guidance Scale", minimum=0, maximum=20, step=0.1, value=7
|
|
|
|
|
|
|
|
|
246 |
)
|
247 |
num_inference_steps = gr.Slider(
|
248 |
+
label="Num Inference Steps",
|
249 |
minimum=1,
|
250 |
+
maximum=100,
|
251 |
step=1,
|
252 |
+
value=30,
|
253 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
+
with gr.Row():
|
256 |
+
sampler = gr.Dropdown(
|
257 |
+
label="Sampler",
|
258 |
+
choices=[
|
259 |
+
"DPM++ 2M SDE Karras",
|
260 |
+
"DPM++ 2M SDE",
|
261 |
+
"Euler a",
|
262 |
+
"Euler",
|
263 |
+
"DPM++ 2M Karras",
|
264 |
+
"DPM++ 2M",
|
265 |
+
"LMS Karras",
|
266 |
+
"Heun",
|
267 |
+
"DPM++ SDE Karras",
|
268 |
+
"DPM++ SDE",
|
269 |
+
"DPM2 Karras",
|
270 |
+
"DPM2",
|
271 |
+
"DPM2 a Karras",
|
272 |
+
"DPM2 a",
|
273 |
+
"LMS",
|
274 |
+
"DDIM",
|
275 |
+
"PLMS",
|
276 |
+
],
|
277 |
+
value="DPM++ 2M SDE Karras",
|
278 |
+
)
|
279 |
+
aspect_ratio_selector = gr.Dropdown(
|
280 |
+
label="Aspect Ratio",
|
281 |
+
choices=[
|
282 |
+
"1024 x 1024",
|
283 |
+
"1152 x 896",
|
284 |
+
"896 x 1152",
|
285 |
+
"1216 x 832",
|
286 |
+
"832 x 1216",
|
287 |
+
"1344 x 768",
|
288 |
+
"768 x 1344",
|
289 |
+
"1536 x 640",
|
290 |
+
"640 x 1536",
|
291 |
+
],
|
292 |
+
value="1024 x 1024",
|
293 |
+
)
|
294 |
+
|
295 |
+
with gr.Row():
|
296 |
+
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
|
297 |
+
upscaler_strength = gr.Slider(
|
298 |
+
label="Upscaler Strength",
|
299 |
+
minimum=0,
|
300 |
+
maximum=1,
|
301 |
+
step=0.05,
|
302 |
+
value=0.55,
|
303 |
+
)
|
304 |
+
upscale_by = gr.Slider(
|
305 |
+
label="Upscale By",
|
306 |
+
minimum=1,
|
307 |
+
maximum=4,
|
308 |
+
step=0.1,
|
309 |
+
value=1.5,
|
310 |
+
)
|
311 |
+
|
312 |
+
with gr.Column(scale=1):
|
313 |
+
output_image = gr.Image(label="Generated Image")
|
314 |
+
output_text = gr.JSON(label="Generation Info")
|
315 |
+
|
316 |
+
with gr.Row():
|
317 |
+
generate_button = gr.Button("Generate")
|
318 |
+
|
319 |
+
# Add the history component
|
320 |
+
history = gr.HTML(label="Generation History")
|
321 |
+
|
322 |
+
# Update the generate_button click event
|
323 |
+
generate_button.click(
|
324 |
+
generate,
|
325 |
+
inputs=[
|
326 |
+
prompt,
|
327 |
+
negative_prompt,
|
328 |
+
seed,
|
329 |
+
custom_width,
|
330 |
+
custom_height,
|
331 |
+
guidance_scale,
|
332 |
+
num_inference_steps,
|
333 |
+
sampler,
|
334 |
+
aspect_ratio_selector,
|
335 |
+
use_upscaler,
|
336 |
+
upscaler_strength,
|
337 |
+
upscale_by,
|
338 |
+
],
|
339 |
+
outputs=[output_image, output_text, history],
|
340 |
)
|
341 |
+
|
342 |
+
# Add a function to update the history display
|
343 |
+
def update_history(history_data):
|
344 |
+
html = "<div class='history-container'>"
|
345 |
+
for item in history_data:
|
346 |
+
html += f"""
|
347 |
+
<div class='history-item'>
|
348 |
+
<img src='{item['thumbnail']}' alt='Generated Image'>
|
349 |
+
<div class='history-info'>
|
350 |
+
<p><strong>Prompt:</strong> {item['prompt']}</p>
|
351 |
+
<p><strong>Negative Prompt:</strong> {item['negative_prompt']}</p>
|
352 |
+
<p><strong>Seed:</strong> {item['seed']}</p>
|
353 |
+
<p><strong>Size:</strong> {item['width']}x{item['height']}</p>
|
354 |
+
</div>
|
355 |
+
</div>
|
356 |
+
"""
|
357 |
+
html += "</div>"
|
358 |
+
return html
|
359 |
+
|
360 |
+
# Connect the update_history function to the history component
|
361 |
+
history.change(update_history, inputs=[history], outputs=[history])
|
362 |
+
|
363 |
+
demo.queue(concurrency_count=1, max_size=20)
|
364 |
+
demo.launch(debug=True)
|