import os import gc import gradio as gr import numpy as np import torch import json import spaces import config import utils import logging from PIL import Image, PngImagePlugin from datetime import datetime from diffusers.models import AutoencoderKL from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline import random logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1" HF_TOKEN = os.getenv("HF_TOKEN") CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512")) MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs") HISTORY_SECRET = os.getenv("HISTORY_SECRET", "default_secret") MODEL = os.getenv( "MODEL", "https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors", ) DESCRIPTION = '''

High Definition Pony Diffusion

Gradio demo for PonyDiffusion v6 with image gallery, json prompt support, advanced options and more.

❤️ Thanks for ✨10k visits! FLUX INTEGRATION COMING SOON!

🔎 For more details about me, take a look at My website.

🌚 For dark mode compatibility, click here.

''' torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def load_pipeline(model_name): vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, ) pipeline = ( StableDiffusionXLPipeline.from_single_file if MODEL.endswith(".safetensors") else StableDiffusionXLPipeline.from_pretrained ) pipe = pipeline( model_name, vae=vae, torch_dtype=torch.float16, custom_pipeline="lpw_stable_diffusion_xl", use_safetensors=True, add_watermarker=False, use_auth_token=HF_TOKEN, variant="fp16", ) pipe.to(device) return pipe def parse_json_parameters(json_str): try: params = json.loads(json_str) required_keys = ['prompt', 'negative_prompt', 'resolution', 'guidance_scale', 'num_inference_steps', 'seed', 'sampler'] for key in required_keys: if key not in params: raise ValueError(f"Missing required key: {key}") width, height = map(int, params['resolution'].split(' x ')) return { 'prompt': params['prompt'], 'negative_prompt': params['negative_prompt'], 'seed': params['seed'], 'width': width, 'height': height, 'guidance_scale': params['guidance_scale'], 'num_inference_steps': params['num_inference_steps'], 'sampler': params['sampler'], 'use_upscaler': params.get('use_upscaler', False) } except json.JSONDecodeError: raise ValueError("Invalid JSON format") except Exception as e: raise ValueError(f"Error parsing JSON: {str(e)}") @spaces.GPU def generate( prompt: str, negative_prompt: str = "", seed: int = 0, custom_width: int = 1024, custom_height: int = 1024, guidance_scale: float = 7.0, num_inference_steps: int = 30, sampler: str = "DPM++ 2M SDE Karras", aspect_ratio_selector: str = "1024 x 1024", use_upscaler: bool = False, upscaler_strength: float = 0.55, upscale_by: float = 1.5, json_params: str = "", batch_size: int = 1, progress=gr.Progress(track_tqdm=True), ) -> Image: if json_params: try: params = parse_json_parameters(json_params) prompt = params['prompt'] negative_prompt = params['negative_prompt'] seed = params['seed'] custom_width = params['width'] custom_height = params['height'] guidance_scale = params['guidance_scale'] num_inference_steps = params['num_inference_steps'] sampler = params['sampler'] use_upscaler = params['use_upscaler'] except ValueError as e: raise gr.Error(str(e)) generator = utils.seed_everything(seed) width, height = utils.aspect_ratio_handler( aspect_ratio_selector, custom_width, custom_height, ) width, height = utils.preprocess_image_dimensions(width, height) backup_scheduler = pipe.scheduler pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler) if use_upscaler: upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components) metadata = { "prompt": prompt, "negative_prompt": negative_prompt, "resolution": f"{width} x {height}", "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "seed": seed, "sampler": sampler, "batch_size": batch_size, } if use_upscaler: new_width = int(width * upscale_by) new_height = int(height * upscale_by) metadata["use_upscaler"] = { "upscale_method": "nearest-exact", "upscaler_strength": upscaler_strength, "upscale_by": upscale_by, "new_resolution": f"{new_width} x {new_height}", } else: metadata["use_upscaler"] = None logger.info(json.dumps(metadata, indent=4)) try: all_images = [] for _ in range(batch_size): batch_generator = utils.seed_everything(random.randint(0, utils.MAX_SEED)) if use_upscaler: latents = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=batch_generator, output_type="latent", ).images upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by) images = upscaler_pipe( prompt=prompt, negative_prompt=negative_prompt, image=upscaled_latents, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, strength=upscaler_strength, generator=batch_generator, output_type="pil", ).images else: images = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=batch_generator, output_type="pil", ).images all_images.extend(images) if all_images and IS_COLAB: for image in all_images: filepath = utils.save_image(image, metadata, OUTPUT_DIR) logger.info(f"Image saved as {filepath} with metadata") return all_images, metadata except Exception as e: logger.exception(f"An error occurred: {e}") raise finally: if use_upscaler: del upscaler_pipe pipe.scheduler = backup_scheduler utils.free_memory() generation_history = [] def update_history_list(): return [item["image"] for item in generation_history] def handle_image_click(evt: gr.SelectData): selected = generation_history[evt.index] return selected["image"], json.dumps(selected["metadata"], indent=2) def generate_and_update_history(*args, **kwargs): global generation_history images, metadata = generate(*args, **kwargs) timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") for image in images: generation_history.insert(0, { "prompt": metadata["prompt"], "timestamp": timestamp, "image": image, "metadata": metadata }) if len(generation_history) > 20: generation_history = generation_history[:20] return images[0], json.dumps(metadata, indent=2), update_history_list() with open('characterfull.txt', 'r') as f: characters = [line.strip() for line in f.readlines()] def get_random_character(): return random.choice(characters) def add_quality_tags(prompt, negative_prompt): positive_tags = "score_9, score_8_up, score_7_up, score_6_up, dramatic lighting" negative_tags = "worst quality, low quality, text, censored, deformed, bad hand, blurry, (watermark), mutated hands, monochrome" new_prompt = f"{positive_tags}, {prompt}" if prompt else positive_tags new_negative_prompt = f"{negative_tags}, {negative_prompt}" if negative_prompt else negative_tags return new_prompt, new_negative_prompt if torch.cuda.is_available(): pipe = load_pipeline(MODEL) logger.info("Loaded on Device!") else: pipe = None def check_history_password(password): if password == HISTORY_SECRET: return gr.update(visible=True) else: return gr.update(visible=False) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=5, placeholder="Enter your prompt", container=False, ) run_button = gr.Button( "Generate", variant="primary", scale=0 ) with gr.Row(): random_character_button = gr.Button("Random Character") add_quality_tags_button = gr.Button("Add quality tags") result = gr.Image( label="Result", show_label=False ) with gr.Accordion(label="Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative Prompt", max_lines=5, placeholder="Enter a negative prompt", value="" ) aspect_ratio_selector = gr.Radio( label="Aspect Ratio", choices=config.aspect_ratios, value="1024 x 1024", container=True, ) with gr.Group(visible=False) as custom_resolution: with gr.Row(): custom_width = gr.Slider( label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=1024, ) custom_height = gr.Slider( label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=1024, ) use_upscaler = gr.Checkbox(label="Use Upscaler", value=False) with gr.Row() as upscaler_row: upscaler_strength = gr.Slider( label="Strength", minimum=0, maximum=1, step=0.05, value=0.55, visible=False, ) upscale_by = gr.Slider( label="Upscale by", minimum=1, maximum=1.5, step=0.1, value=1.5, visible=False, ) sampler = gr.Dropdown( label="Sampler", choices=config.sampler_list, interactive=True, value="DPM++ 2M SDE Karras", ) with gr.Row(): seed = gr.Slider( label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0 ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Group(): with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=1, maximum=12, step=0.1, value=7.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) batch_size = gr.Slider( label="Batch Size", minimum=1, maximum=4, step=1, value=1, ) with gr.Accordion(label="Generation Parameters", open=False): gr_metadata = gr.JSON(label="Metadata", show_label=False) json_input = gr.TextArea(label="Edit/Paste JSON Parameters", placeholder="Paste or edit JSON parameters here") generate_from_json = gr.Button("Generate from JSON") with gr.Accordion("Generation History", open=False) as history_accordion: history_password = gr.Textbox( label="Enable generation history; do not generate illegal or harmful content.", type="password", placeholder="GLOBAL GENERATION HISTORY IS DISABLED" ) history_submit = gr.Button("Submit") with gr.Group(visible=False) as history_content: history_gallery = gr.Gallery( label="History", show_label=False, elem_id="history_gallery", columns=5, rows=2, height="auto" ) with gr.Row(): selected_image = gr.Image(label="Selected Image", interactive=False) selected_metadata = gr.JSON(label="Selected Metadata", show_label=False) gr.Examples( examples=config.examples, inputs=prompt, outputs=[result, gr_metadata], fn=lambda *args, **kwargs: generate_and_update_history(*args, use_upscaler=True, **kwargs), cache_examples=CACHE_EXAMPLES, ) use_upscaler.change( fn=lambda x: [gr.update(visible=x), gr.update(visible=x)], inputs=use_upscaler, outputs=[upscaler_strength, upscale_by], queue=False, api_name=False, ) aspect_ratio_selector.change( fn=lambda x: gr.update(visible=x == "Custom"), inputs=aspect_ratio_selector, outputs=custom_resolution, queue=False, api_name=False, ) inputs = [ prompt, negative_prompt, seed, custom_width, custom_height, guidance_scale, num_inference_steps, sampler, aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by, json_input, batch_size, ] prompt.submit( fn=utils.randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate_and_update_history, inputs=inputs, outputs=[result, gr_metadata, history_gallery], ) negative_prompt.submit( fn=utils.randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate_and_update_history, inputs=inputs, outputs=[result, gr_metadata, history_gallery], ) run_button.click( fn=utils.randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate_and_update_history, inputs=inputs, outputs=[result, gr_metadata, history_gallery], ) generate_from_json.click( fn=generate_and_update_history, inputs=inputs, outputs=[result, gr_metadata, history_gallery], ) random_character_button.click( fn=get_random_character, inputs=[], outputs=[prompt] ) add_quality_tags_button.click( fn=add_quality_tags, inputs=[prompt, negative_prompt], outputs=[prompt, negative_prompt] ) history_gallery.select( fn=handle_image_click, inputs=[], outputs=[selected_image, selected_metadata] ) history_submit.click( fn=check_history_password, inputs=[history_password], outputs=[history_content], ) demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)