File size: 5,005 Bytes
ac0eff7
17c173b
ac0eff7
17c173b
ac0eff7
17c173b
b9a7bd3
ac0eff7
17c173b
623e38b
ac0eff7
623e38b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac0eff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623e38b
 
 
 
 
 
 
 
 
ac0eff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a7bd3
 
 
 
 
 
 
 
 
 
ac0eff7
f6fb494
6862403
ac0eff7
6862403
b9a7bd3
 
 
 
ac0eff7
 
 
 
 
 
 
 
 
 
 
b9a7bd3
 
 
 
 
 
ac0eff7
17c173b
ac0eff7
17c173b
ac0eff7
623e38b
 
17c173b
 
ac0eff7
 
 
 
 
17c173b
 
 
 
 
ac0eff7
 
17c173b
 
 
 
ac0eff7
17c173b
 
 
 
 
b9a7bd3
ac0eff7
 
 
 
 
 
 
 
 
 
 
17c173b
 
ac0eff7
 
 
 
 
 
 
 
 
 
17c173b
ac0eff7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import gradio as gr
import spaces
import json
from modules.pmbl import PMBL

# Initialize the PMBL instance with the Qwen model path
pmbl = PMBL("Qwen/QwQ-32B-GGUF")

# Use a simpler theme approach that works with all Gradio versions
custom_css = """
body {
    font-family: Arial, sans-serif;
    margin: 0;
    padding: 20px;
    background: linear-gradient(to bottom right, #222222, #333333);
    color: #f0f8ff;
}

h1 {
    text-align: center;
    margin-bottom: 20px;
    color: #f0f8ff;
    text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.5);
}

.gradio-container {
    max-width: 900px !important;
}

#chat-container {
    border: 1px solid #ccc !important;
    border-radius: 5px !important;
    background-color: #1e1e1e !important;
}

.user-message {
    background-color: #59788E !important;
    color: white !important;
    border-radius: 5px !important;
    padding: 8px !important;
    margin: 5px 0 !important;
    align-self: flex-end !important;
    margin-left: auto !important;
    white-space: pre-wrap !important;
}

.bot-message {
    background-color: #2c3e4c !important;
    color: white !important;
    border-radius: 5px !important;
    padding: 8px !important;
    margin: 5px 0 !important;
    align-self: flex-start !important;
    margin-right: auto !important;
    white-space: pre-wrap !important;
}

.mode-toggle {
    margin-bottom: 10px !important;
}

button {
    background-color: #59788E !important;
    color: white !important;
}

button:hover {
    background-color: #45a049 !important;
}
"""

@spaces.GPU(duration=120)
def generate_response(message, history, memory_mode):
    """Generate a response from the model with ZeroGPU support"""
    # Format the history for the model
    formatted_history = []
    for human, assistant in history:
        formatted_history.append({"role": "user", "content": human})
        if assistant:  # Check if assistant message exists
            formatted_history.append({"role": "PMB", "content": assistant})

    # Get the response
    response = ""
    mode = "smart" if memory_mode else "full"

    # Process history in the PMBL module
    history_context = pmbl.process_history(formatted_history, mode, message)

    try:
        # Generate the response in chunks
        for chunk in pmbl.generate_streaming_response(message, history_context, mode):
            response += chunk
            yield response
    except Exception as e:
        # Handle any errors that might occur during generation
        error_msg = f"I encountered an error while generating a response: {str(e)}"
        yield error_msg
        response = error_msg

    # Save the conversation to local history only
    pmbl.save_chat(message, response)

    # Process and organize chat history
    try:
        pmbl.sleep_mode()
    except Exception as e:
        print(f"Error in sleep mode: {e}")

def user_input_fn(message, history, memory_mode):
    """Process user input and generate bot response"""
    return "", history + [[message, None]]

def bot_response_fn(history, memory_mode):
    """Generate and display bot response"""
    if history and history[-1][1] is None:
        message = history[-1][0]
        history[-1][1] = ""

        try:
            for response in generate_response(message, history[:-1], memory_mode):
                history[-1][1] = response
                yield history
        except Exception as e:
            history[-1][1] = f"Error generating response: {str(e)}"
            yield history
    else:
        yield history

# Create the Gradio interface
with gr.Blocks(css=custom_css) as demo:
    gr.HTML("<h1>Persistent Memory Bot</h1>")

    with gr.Row():
        memory_mode = gr.Checkbox(
            label="Smart Mode (Faster responses but less context memory)",
            value=False,
            elem_classes="mode-toggle"
        )

    chatbot = gr.Chatbot(
        [],
        elem_id="chat-container",
        height=500,
        avatar_images=(None, None),
        bubble_full_width=False
    )

    with gr.Row():
        msg = gr.Textbox(
            placeholder="Enter your message, use the switch for faster responses but less memory. Do not enter sensitive info. Cannot provide financial/legal advice.",
            show_label=False,
            scale=9
        )
        submit_btn = gr.Button("Send", scale=1)

    gr.HTML("<div id='loading-message' style='margin-top: 10px; color: #00ff00; font-style: italic;'>Processing may take up to 2 minutes for initial setup.</div>")

    # Set up the interaction
    msg.submit(
        user_input_fn,
        [msg, chatbot, memory_mode],
        [msg, chatbot],
        queue=False
    ).then(
        bot_response_fn,
        [chatbot, memory_mode],
        [chatbot]
    )

    submit_btn.click(
        user_input_fn,
        [msg, chatbot, memory_mode],
        [msg, chatbot],
        queue=False
    ).then(
        bot_response_fn,
        [chatbot, memory_mode],
        [chatbot]
    )

# Launch the app
demo.queue()
demo.launch()