!pip install tensorflow import tensorflow as tf from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Dropout, Add, Layer, Flatten, BatchNormalization, Activation from tensorflow.keras.models import Model class ResLayer(Layer): def __init__(self, filters, name = "Res_Layer"): super(ResLayer, self).__init__(name = name) self.filters = filters self.f1, self.f2, self.f3 = self.filters # Camino normal self.Conv_1 = Conv2D(filters = self.f1, kernel_size = (1, 1), strides = (1, 1)) self.MaxPool_1 = MaxPool2D(pool_size = (2, 2)) self.BatchNorm_1 = BatchNormalization() self.Activation_1 = Activation("relu") self.Conv_2 = Conv2D(filters = self.f2, kernel_size = (1, 1), strides = (1, 1)) self.BatchNorm_2 = BatchNormalization() self.Activation_2 = Activation("relu") self.Conv_3 = Conv2D(filters = self.f3, kernel_size = (1, 1), strides = (1, 1)) self.BatchNorm_3 = BatchNormalization() # Camino corto self.Conv_4 = Conv2D(filters = self.f3, kernel_size = (1, 1), strides = (1, 1)) self.MaxPool_2 = MaxPool2D(pool_size = (2, 2)) self.Add = Add() self.Activation_3 = Activation("relu") def call(self, inputs): X_copy = inputs X = self.Conv_1(inputs) X = self.MaxPool_1(X) X = self.BatchNorm_1(X) X = self.Activation_1(X) X = self.Conv_2(X) X = self.BatchNorm_2(X) X = self.Activation_2(X) X = self.Conv_3(X) X = self.BatchNorm_3(X) X_copy = self.Conv_4(X_copy) X_copy = self.MaxPool_2(X_copy) outputs = self.Add([X, X_copy]) outputs = self.Activation_3(outputs) return outputs class ResNet(Model): def __init__(self, filters = [[64, 128, 256]], name = "ResNet"): super(ResNet, self).__init__(name = name) self.filters = filters self.nb_layers = tf.shape(self.filters)[0].numpy() self.res_layer = [ResLayer(filters) for i, filters in enumerate(self.filters)] self.Flatten = Flatten() self.Dense_1 = Dense(units = 128, activation = "relu") self.dropout_1 = Dropout(rate = 0.2) self.Dense_2 = Dense(units = 64, activation = "relu") self.dropout_2 = Dropout(rate = 0.1) self.Dense_Out = Dense(units = 10, activation = "softmax") def call(self, inputs): outputs = inputs for i in range(self.nb_layers): outputs = self.res_layer[i](outputs) outputs = self.Flatten(outputs) outputs = self.Dense_1(outputs) outputs = self.dropout_1(outputs) outputs = self.Dense_2(outputs) outputs = self.dropout_2(outputs) outputs = self.Dense_Out(outputs) return outputs model = ResNet() model.build(input_shape = [None, 28, 28, 1]) model.load_weights("ResNet_Weights.tf") import gradio as gr def digit_recognition(img): img = img / 255. img = tf.expand_dims(img, axis = -1) img = tf.convert_to_tensor([img], dtype = tf.float32) prediction = model(img) prediction = tf.squeeze(prediction) return {"Cero": float(prediction[0]), "Uno": float(prediction[1]), "Dos": float(prediction[2]), "Tres": float(prediction[3]), "Cuatro": float(prediction[4]), "Cinco": float(prediction[5]), "Seis": float(prediction[6]), "Siete": float(prediction[7]), "Ocho": float(prediction[8]), "Nueve": float(prediction[9])} app = gr.Interface(fn = digit_recognition, inputs = "sketchpad", outputs = "label", description = "Dibuja un nĂºmero", title = "MNIST Digit Recognition") app.launch(share = True)