|
import argparse |
|
import sys |
|
import torch |
|
import json |
|
from multiprocessing import cpu_count |
|
|
|
global usefp16 |
|
usefp16 = False |
|
|
|
|
|
def use_fp32_config(): |
|
usefp16 = False |
|
device_capability = 0 |
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda:0") |
|
device_capability = torch.cuda.get_device_capability(device)[0] |
|
if device_capability >= 7: |
|
usefp16 = True |
|
for config_file in ["32k.json", "40k.json", "48k.json"]: |
|
with open(f"configs/{config_file}", "r") as d: |
|
data = json.load(d) |
|
|
|
if "train" in data and "fp16_run" in data["train"]: |
|
data["train"]["fp16_run"] = True |
|
|
|
with open(f"configs/{config_file}", "w") as d: |
|
json.dump(data, d, indent=4) |
|
|
|
print(f"Set fp16_run to true in {config_file}") |
|
|
|
with open( |
|
"trainset_preprocess_pipeline_print.py", "r", encoding="utf-8" |
|
) as f: |
|
strr = f.read() |
|
|
|
strr = strr.replace("3.0", "3.7") |
|
|
|
with open( |
|
"trainset_preprocess_pipeline_print.py", "w", encoding="utf-8" |
|
) as f: |
|
f.write(strr) |
|
else: |
|
for config_file in ["32k.json", "40k.json", "48k.json"]: |
|
with open(f"configs/{config_file}", "r") as f: |
|
data = json.load(f) |
|
|
|
if "train" in data and "fp16_run" in data["train"]: |
|
data["train"]["fp16_run"] = False |
|
|
|
with open(f"configs/{config_file}", "w") as d: |
|
json.dump(data, d, indent=4) |
|
|
|
print(f"Set fp16_run to false in {config_file}") |
|
|
|
with open( |
|
"trainset_preprocess_pipeline_print.py", "r", encoding="utf-8" |
|
) as f: |
|
strr = f.read() |
|
|
|
strr = strr.replace("3.7", "3.0") |
|
|
|
with open( |
|
"trainset_preprocess_pipeline_print.py", "w", encoding="utf-8" |
|
) as f: |
|
f.write(strr) |
|
else: |
|
print( |
|
"CUDA is not available. Make sure you have an NVIDIA GPU and CUDA installed." |
|
) |
|
return (usefp16, device_capability) |
|
|
|
|
|
class Config: |
|
def __init__(self): |
|
self.device = "cuda:0" |
|
self.is_half = True |
|
self.n_cpu = 0 |
|
self.gpu_name = None |
|
self.gpu_mem = None |
|
( |
|
self.python_cmd, |
|
self.listen_port, |
|
self.iscolab, |
|
self.noparallel, |
|
self.noautoopen, |
|
self.paperspace, |
|
self.is_cli, |
|
) = self.arg_parse() |
|
|
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
|
|
|
@staticmethod |
|
def arg_parse() -> tuple: |
|
exe = sys.executable or "python" |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--port", type=int, default=7865, help="Listen port") |
|
parser.add_argument("--pycmd", type=str, default=exe, help="Python command") |
|
parser.add_argument("--colab", action="store_true", help="Launch in colab") |
|
parser.add_argument( |
|
"--noparallel", action="store_true", help="Disable parallel processing" |
|
) |
|
parser.add_argument( |
|
"--noautoopen", |
|
action="store_true", |
|
help="Do not open in browser automatically", |
|
) |
|
parser.add_argument( |
|
"--paperspace", |
|
action="store_true", |
|
help="Note that this argument just shares a gradio link for the web UI. Thus can be used on other non-local CLI systems.", |
|
) |
|
parser.add_argument( |
|
"--is_cli", |
|
action="store_true", |
|
help="Use the CLI instead of setting up a gradio UI. This flag will launch an RVC text interface where you can execute functions from infer-web.py!", |
|
) |
|
cmd_opts = parser.parse_args() |
|
|
|
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865 |
|
|
|
return ( |
|
cmd_opts.pycmd, |
|
cmd_opts.port, |
|
cmd_opts.colab, |
|
cmd_opts.noparallel, |
|
cmd_opts.noautoopen, |
|
cmd_opts.paperspace, |
|
cmd_opts.is_cli, |
|
) |
|
|
|
|
|
|
|
@staticmethod |
|
def has_mps() -> bool: |
|
if not torch.backends.mps.is_available(): |
|
return False |
|
try: |
|
torch.zeros(1).to(torch.device("mps")) |
|
return True |
|
except Exception: |
|
return False |
|
|
|
def device_config(self) -> tuple: |
|
if torch.cuda.is_available(): |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
if ( |
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) |
|
or "P40" in self.gpu_name.upper() |
|
or "1060" in self.gpu_name |
|
or "1070" in self.gpu_name |
|
or "1080" in self.gpu_name |
|
): |
|
print("Found GPU", self.gpu_name, ", force to fp32") |
|
self.is_half = False |
|
else: |
|
print("Found GPU", self.gpu_name) |
|
use_fp32_config() |
|
self.gpu_mem = int( |
|
torch.cuda.get_device_properties(i_device).total_memory |
|
/ 1024 |
|
/ 1024 |
|
/ 1024 |
|
+ 0.4 |
|
) |
|
if self.gpu_mem <= 4: |
|
with open("trainset_preprocess_pipeline_print.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("trainset_preprocess_pipeline_print.py", "w") as f: |
|
f.write(strr) |
|
elif self.has_mps(): |
|
print("No supported Nvidia GPU found, use MPS instead") |
|
self.device = "mps" |
|
self.is_half = False |
|
use_fp32_config() |
|
else: |
|
print("No supported Nvidia GPU found, use CPU instead") |
|
self.device = "cpu" |
|
self.is_half = False |
|
use_fp32_config() |
|
|
|
if self.n_cpu == 0: |
|
self.n_cpu = cpu_count() |
|
|
|
if self.is_half: |
|
|
|
x_pad = 3 |
|
x_query = 10 |
|
x_center = 60 |
|
x_max = 65 |
|
else: |
|
|
|
x_pad = 1 |
|
x_query = 6 |
|
x_center = 38 |
|
x_max = 41 |
|
|
|
if self.gpu_mem != None and self.gpu_mem <= 4: |
|
x_pad = 1 |
|
x_query = 5 |
|
x_center = 30 |
|
x_max = 32 |
|
|
|
return x_pad, x_query, x_center, x_max |
|
|