meghsn's picture
Result updates
d5581cc
raw
history blame
19.3 kB
import json
import re
import os
import streamlit as st
import requests
import pandas as pd
from io import StringIO
import plotly.graph_objs as go
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
import streamlit.components.v1 as components
from datetime import datetime
from urllib.parse import quote
from pathlib import Path
import re
import html
from typing import Dict, Any
BENCHMARKS = ["WebArena", "WorkArena-L1", "WorkArena-L2", "WorkArena-L3", "MiniWoB", "WebLINX", "AssistantBench"]
def sanitize_agent_name(agent_name):
# Only allow alphanumeric chars, hyphen, underscore
if agent_name.startswith('.'):
raise ValueError("Agent name cannot start with a dot")
if not re.match("^[a-zA-Z0-9-_][a-zA-Z0-9-_.]*$", agent_name):
raise ValueError("Invalid agent name format")
return agent_name
def safe_path_join(*parts):
# Ensure we stay within results directory
base = Path("results").resolve()
try:
path = base.joinpath(*parts).resolve()
if not str(path).startswith(str(base)):
raise ValueError("Path traversal detected")
return path
except Exception:
raise ValueError("Invalid path")
def sanitize_column_name(col: str) -> str:
"""Sanitize column names for HTML display"""
return html.escape(str(col))
def sanitize_cell_value(value: Any) -> str:
if isinstance(value, (int, float)):
return str(value)
if isinstance(value, str) and '±' in value:
score, std_err = value.split('±')
return f'{score.strip()} <span style="font-size: smaller; color: var(--lighter-color);">±{std_err.strip()}</span>'
return html.escape(str(value))
def create_html_table_main(df):
col1, col2 = st.columns([2,6])
with col1:
sort_column = st.selectbox("Sort by", df.columns.tolist(), index=df.columns.tolist().index("WebArena"), key="main_sort_column")
with col2:
sort_order = st.radio("Order", ["Ascending", "Descending"], index=1, horizontal=True, key="main_sort_order")
def get_sort_value(row):
if row == "-":
return float('-inf')
else:
try:
return float(row)
except ValueError:
return row
# Sort dataframe
if sort_order == "Ascending":
df = df.sort_values(by=sort_column, key=lambda x: x.apply(get_sort_value))
else:
df = df.sort_values(by=sort_column, ascending=False, key=lambda x: x.apply(get_sort_value))
html = '''
<style>
table {
width: 100%;
border-collapse: collapse;
}
th, td {
border: 1px solid #ddd;
padding: 8px;
text-align: center;
}
th {
font-weight: bold;
}
.table-container {
padding-bottom: 20px;
}
</style>
'''
html += '<div class="table-container">'
html += '<table>'
html += '<thead><tr>'
for column in df.columns:
html += f'<th>{sanitize_column_name(column)}</th>'
html += '</tr></thead>'
html += '<tbody>'
for _, row in df.iterrows():
html += '<tr>'
for col in df.columns:
if col == "Agent":
html += f'<td>{row[col]}</td>'
else:
html += f'<td>{sanitize_cell_value(row[col])}</td>'
html += '</tr>'
html += '</tbody></table>'
html += '</div>'
return html
def create_html_table_benchmark(df, benchmark):
col1, col2 = st.columns([2,6])
with col1:
sort_column = st.selectbox("Sort by", df.columns.tolist(), index=df.columns.tolist().index("Score"), key=f"benchmark_sort_column_{benchmark}")
with col2:
sort_order = st.radio("Order", ["Ascending", "Descending"], index=1, horizontal=True, key=f"benchmark_sort_order_{benchmark}")
def get_sort_value(row):
if row == "-":
return float('-inf')
else:
try:
return float(row)
except ValueError:
return row
# Sort dataframe
if sort_order == "Ascending":
df = df.sort_values(by=sort_column, key=lambda x: x.apply(get_sort_value))
else:
df = df.sort_values(by=sort_column, ascending=False, key=lambda x: x.apply(get_sort_value))
html = '''
<style>
table {
width: 100%;
border-collapse: collapse;
}
th, td {
border: 1px solid #ddd;
padding: 8px;
text-align: center;
}
th {
font-weight: bold;
}
.table-container {
padding-bottom: 20px;
}
</style>
'''
html += '<div class="table-container">'
html += '<table>'
html += '<thead><tr>'
for column in df.columns:
if column == "Reproduced_all" or column == "std_err":
continue
html += f'<th>{sanitize_column_name(column)}</th>'
html += '</tr></thead>'
html += '<tbody>'
for _, row in df.iterrows():
html += '<tr>'
for column in df.columns:
if column == "Reproduced":
if row[column] == "-":
html += f'<td>{sanitize_cell_value(row[column])}</td>'
else:
summary = sanitize_cell_value(row[column])
details = "<br>".join(map(sanitize_cell_value, row["Reproduced_all"]))
html += f'<td><details><summary>{summary}</summary>{details}</details></td>'
elif column == "Reproduced_all" or column == "std_err":
continue
elif column == "Score":
score_with_std_err = f'{row[column]} ± {row["std_err"]}'
html += f'<td>{sanitize_cell_value(score_with_std_err)}</td>'
else:
html += f'<td>{sanitize_cell_value(row[column])}</td>'
html += '</tr>'
html += '</tbody></table>'
html += '</div>'
return html
def check_sanity(agent):
try:
safe_agent = sanitize_agent_name(agent)
for benchmark in BENCHMARKS:
file_path = safe_path_join(safe_agent, f"{benchmark.lower()}.json")
if not file_path.is_file():
continue
original_count = 0
with open(file_path) as f:
results = json.load(f)
for result in results:
if not all(key in result for key in ["agent_name", "benchmark", "original_or_reproduced", "score", "std_err", "benchmark_specific", "benchmark_tuned", "followed_evaluation_protocol", "reproducible", "comments", "study_id", "date_time"]):
return False
if result["agent_name"] != agent:
return False
if result["benchmark"] != benchmark:
return False
if result["original_or_reproduced"] == "Original":
original_count += 1
if original_count != 1:
return False
return True
except ValueError:
return False
def main():
st.set_page_config(page_title="BrowserGym Leaderboard", layout="wide", initial_sidebar_state="expanded")
st.markdown("""
<style>
:root {
--lighter-color: #888; /* Default for light theme */
}
@media (prefers-color-scheme: dark) {
:root {
--lighter-color: #ccc; /* Default for dark theme */
}
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<head>
<meta http-equiv="Content-Security-Policy"
content="default-src 'self' https://huggingface.co;
script-src 'self' 'unsafe-inline';
style-src 'self' 'unsafe-inline';
img-src 'self' data: https:;
frame-ancestors 'none';">
<meta http-equiv="X-Frame-Options" content="DENY">
<meta http-equiv="X-Content-Type-Options" content="nosniff">
<meta http-equiv="Referrer-Policy" content="strict-origin-when-cross-origin">
</head>
""", unsafe_allow_html=True)
all_agents = os.listdir("results")
all_results = {}
for agent in all_agents:
if not check_sanity(agent):
st.error(f"Results for {agent} are not in the correct format.")
continue
agent_results = []
for benchmark in BENCHMARKS:
file_path = safe_path_join(agent, f"{benchmark.lower()}.json")
if not file_path.is_file():
continue
with open(file_path) as f:
agent_results.extend(json.load(f))
all_results[agent] = agent_results
st.title("🏆 BrowserGym Leaderboard")
st.markdown("Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.")
# content = create_yall()
tabs = st.tabs(["🏆 Main Leaderboard",] + BENCHMARKS + ["📝 About"])
with tabs[0]:
# Leaderboard tab
def get_leaderboard_dict(results):
leaderboard_dict = []
for key, values in results.items():
result_dict = {"Agent": key}
for benchmark in BENCHMARKS:
if any(value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original" for value in values):
result_dict[benchmark] = [value["score"] for value in values if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original"][0]
else:
result_dict[benchmark] = "-"
leaderboard_dict.append(result_dict)
return leaderboard_dict
leaderboard_dict = get_leaderboard_dict(all_results)
# print (leaderboard_dict)
full_df = pd.DataFrame.from_dict(leaderboard_dict)
df = pd.DataFrame(columns=full_df.columns)
dfs_to_concat = []
dfs_to_concat.append(full_df)
# Concatenate the DataFrames
if dfs_to_concat:
df = pd.concat(dfs_to_concat, ignore_index=True)
for benchmark in BENCHMARKS:
df[benchmark] = df[benchmark].apply(lambda x: f"{x:.2f}" if x != "-" else "-")
df[benchmark] = df[benchmark].astype(str)
# Add a search bar
search_query = st.text_input("Search agents", "", key="search_main")
# Filter the DataFrame based on the search query
if search_query:
df = df[df['Agent'].str.contains(search_query, case=False)]
# Display the filtered DataFrame or the entire leaderboard
def make_hyperlink(agent_name):
try:
safe_name = sanitize_agent_name(agent_name)
safe_url = f"https://huggingface.co/spaces/ServiceNow/browsergym-leaderboard/blob/main/results/{quote(safe_name)}/README.md"
return f'<a href="{html.escape(safe_url)}" target="_blank">{html.escape(safe_name)}</a>'
except ValueError:
return ""
df['Agent'] = df['Agent'].apply(make_hyperlink)
html_table = create_html_table_main(df)
st.markdown(html_table, unsafe_allow_html=True)
if st.button("Export to CSV", key="export_main"):
# Export the DataFrame to CSV
csv_data = df.to_csv(index=False)
# Create a link to download the CSV file
st.download_button(
label="Download CSV",
data=csv_data,
file_name="leaderboard.csv",
key="download-csv",
help="Click to download the CSV file",
)
with tabs[-1]:
st.markdown('''
# BrowserGym Leaderboard
This leaderboard tracks performance of various agents on web navigation tasks.
## How to Submit Results for New Agents
### 1. Create Results Directory
Create a new folder in the `results` directory with your agent's name:
```bash
results/
└── your-agent-name/
├── README.md
├── webarena.json
├── workarena-l1.json
├── workarena++-l2.json
├── workarena++-l3.json
└── miniwob.json
```
### 2. Add Agent Details
Create a `README.md` in your agent's folder with the following details:
#### Required Information
- **Model Name**: Base model used (e.g., GPT-4, Claude-2)
- **Model Architecture**: Architecture details and any modifications
- **Input/Output Format**: How inputs are processed and outputs generated
- **Training Details**: Training configuration if applicable
- Dataset used
- Number of training steps
- Hardware used
- Training time
#### Optional Information
- **Paper Link**: Link to published paper/preprint if available
- **Code Repository**: Link to public code implementation
- **Additional Notes**: Any special configurations or requirements
- **License**: License information for your agent
Make sure to organize the information in clear sections using Markdown.
### 3. Add Benchmark Results
Create separate JSON files for each benchmark following this format:
```json
[
{
"agent_name": "your-agent-name",
"study_id": "unique-study-identifier-from-agentlab",
"date_time": "YYYY-MM-DD HH:MM:SS",
"benchmark": "WebArena",
"score": 0.0,
"std_err": 0.0,
"benchmark_specific": "Yes/No",
"benchmark_tuned": "Yes/No",
"followed_evaluation_protocol": "Yes/No",
"reproducible": "Yes/No",
"comments": "Additional details",
"original_or_reproduced": "Original"
}
]
```
Please add all the benchmark files in separate json files named as follows:
- `webarena.json`
- `workarena-l1.json`
- `workarena-l2.json`
- `workarena-l3.json`
- `miniwob.json`
Each file must contain a JSON array with a single object following the format above. The benchmark field in each file must match the benchmark name exactly ([`WebArena`, `WorkArena-L1`, `WorkArena-L2`, `WorkArena-L3`, `MiniWoB`]) and benchmark_lowercase.json as the filename.
### 4. Submit PR
1. Open the community tab and press "New Pull Request"
2. Give it a new title to the PR and follow the steps mentioned
3. Publish the branch
## How to Submit Reproducibility Results for Existing Agents
Open the results file for the agent and benchmark you reproduced the results for.
### 1. Add reproduced results
Append the following entry in the json file. Ensure you set `original_or_reproduced` as `Reproduced`.
```json
[
{
"agent_name": "your-agent-name",
"study_id": "unique-study-identifier-from-agentlab",
"date_time": "YYYY-MM-DD HH:MM:SS",
"benchmark": "WebArena",
"score": 0.0,
"std_err": 0.0,
"benchmark_specific": "Yes/No",
"benchmark_tuned": "Yes/No",
"followed_evaluation_protocol": "Yes/No",
"reproducible": "Yes/No",
"comments": "Additional details",
"original_or_reproduced": "Reproduced"
}
]
```
### 2. Submit PR
1. Open the community tab and press "New Pull Request"
2. Give it a new title to the PR and follow the steps mentioned
3. Publish the branch
## License
MIT
''')
for i, benchmark in enumerate(BENCHMARKS, start=1):
with tabs[i]:
def get_benchmark_dict(results, benchmark):
benchmark_dict = []
for key, values in results.items():
result_dict = {"Agent": key}
flag = 0
for value in values:
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original":
result_dict["Score"] = value["score"]
result_dict["std_err"] = value["std_err"]
result_dict["Benchmark Specific"] = value["benchmark_specific"]
result_dict["Benchmark Tuned"] = value["benchmark_tuned"]
result_dict["Followed Evaluation Protocol"] = value["followed_evaluation_protocol"]
result_dict["Reproducible"] = value["reproducible"]
result_dict["Comments"] = value["comments"]
result_dict["Study ID"] = value["study_id"]
value["date_time"] = datetime.strptime(value["date_time"], "%Y-%m-%d %H:%M:%S").strftime("%B %d, %Y %I:%M %p")
result_dict["Date"] = value["date_time"]
result_dict["Reproduced"] = []
result_dict["Reproduced_all"] = []
flag = 1
if not flag:
result_dict["Score"] = "-"
result_dict["std_err"] = "-"
result_dict["Benchmark Specific"] = "-"
result_dict["Benchmark Tuned"] = "-"
result_dict["Followed Evaluation Protocol"] = "-"
result_dict["Reproducible"] = "-"
result_dict["Comments"] = "-"
result_dict["Study ID"] = "-"
result_dict["Date"] = "-"
result_dict["Reproduced"] = []
result_dict["Reproduced_all"] = []
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Reproduced":
result_dict["Reproduced"].append(value["score"])
value["date_time"] = datetime.strptime(value["date_time"], "%Y-%m-%d %H:%M:%S").strftime("%B %d, %Y %I:%M %p")
result_dict["Reproduced_all"].append(", ".join([str(value["score"]), str(value["date_time"])]))
if result_dict["Reproduced"]:
result_dict["Reproduced"] = str(min(result_dict["Reproduced"])) + " - " + str(max(result_dict["Reproduced"]))
else:
result_dict["Reproduced"] = "-"
benchmark_dict.append(result_dict)
return benchmark_dict
benchmark_dict = get_benchmark_dict(all_results, benchmark=benchmark)
# print (leaderboard_dict)
full_df = pd.DataFrame.from_dict(benchmark_dict)
df_ = pd.DataFrame(columns=full_df.columns)
dfs_to_concat = []
dfs_to_concat.append(full_df)
# Concatenate the DataFrames
if dfs_to_concat:
df_ = pd.concat(dfs_to_concat, ignore_index=True)
df_['Score'] = df_['Score'].apply(lambda x: f"{x:.2f}" if x != "-" else "-")
df_['std_err'] = df_['std_err'].apply(lambda x: f"{x:.1f}" if x != "-" else "-")
df_['Score'] = df_['Score'].astype(str)
html_table = create_html_table_benchmark(df_, benchmark)
st.markdown(html_table, unsafe_allow_html=True)
if __name__ == "__main__":
main()