File size: 12,797 Bytes
9ab270d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import re
import difflib
import numpy as np
system_prompt = r'''You are a helpful AI assistant to compose images using the below python class `Canvas`:
```python
class Canvas:
def set_global_description(self, description: str, detailed_descriptions: list[str], tags: str, HTML_web_color_name: str):
pass
def add_local_description(self, location: str, offset: str, area: str, distance_to_viewer: float, description: str, detailed_descriptions: list[str], tags: str, atmosphere: str, style: str, quality_meta: str, HTML_web_color_name: str):
assert location in ["in the center", "on the left", "on the right", "on the top", "on the bottom", "on the top-left", "on the top-right", "on the bottom-left", "on the bottom-right"]
assert offset in ["no offset", "slightly to the left", "slightly to the right", "slightly to the upper", "slightly to the lower", "slightly to the upper-left", "slightly to the upper-right", "slightly to the lower-left", "slightly to the lower-right"]
assert area in ["a small square area", "a small vertical area", "a small horizontal area", "a medium-sized square area", "a medium-sized vertical area", "a medium-sized horizontal area", "a large square area", "a large vertical area", "a large horizontal area"]
assert distance_to_viewer > 0
pass
```'''
valid_colors = { # r, g, b
'aliceblue': (240, 248, 255), 'antiquewhite': (250, 235, 215), 'aqua': (0, 255, 255),
'aquamarine': (127, 255, 212), 'azure': (240, 255, 255), 'beige': (245, 245, 220),
'bisque': (255, 228, 196), 'black': (0, 0, 0), 'blanchedalmond': (255, 235, 205), 'blue': (0, 0, 255),
'blueviolet': (138, 43, 226), 'brown': (165, 42, 42), 'burlywood': (222, 184, 135),
'cadetblue': (95, 158, 160), 'chartreuse': (127, 255, 0), 'chocolate': (210, 105, 30),
'coral': (255, 127, 80), 'cornflowerblue': (100, 149, 237), 'cornsilk': (255, 248, 220),
'crimson': (220, 20, 60), 'cyan': (0, 255, 255), 'darkblue': (0, 0, 139), 'darkcyan': (0, 139, 139),
'darkgoldenrod': (184, 134, 11), 'darkgray': (169, 169, 169), 'darkgrey': (169, 169, 169),
'darkgreen': (0, 100, 0), 'darkkhaki': (189, 183, 107), 'darkmagenta': (139, 0, 139),
'darkolivegreen': (85, 107, 47), 'darkorange': (255, 140, 0), 'darkorchid': (153, 50, 204),
'darkred': (139, 0, 0), 'darksalmon': (233, 150, 122), 'darkseagreen': (143, 188, 143),
'darkslateblue': (72, 61, 139), 'darkslategray': (47, 79, 79), 'darkslategrey': (47, 79, 79),
'darkturquoise': (0, 206, 209), 'darkviolet': (148, 0, 211), 'deeppink': (255, 20, 147),
'deepskyblue': (0, 191, 255), 'dimgray': (105, 105, 105), 'dimgrey': (105, 105, 105),
'dodgerblue': (30, 144, 255), 'firebrick': (178, 34, 34), 'floralwhite': (255, 250, 240),
'forestgreen': (34, 139, 34), 'fuchsia': (255, 0, 255), 'gainsboro': (220, 220, 220),
'ghostwhite': (248, 248, 255), 'gold': (255, 215, 0), 'goldenrod': (218, 165, 32),
'gray': (128, 128, 128), 'grey': (128, 128, 128), 'green': (0, 128, 0), 'greenyellow': (173, 255, 47),
'honeydew': (240, 255, 240), 'hotpink': (255, 105, 180), 'indianred': (205, 92, 92),
'indigo': (75, 0, 130), 'ivory': (255, 255, 240), 'khaki': (240, 230, 140), 'lavender': (230, 230, 250),
'lavenderblush': (255, 240, 245), 'lawngreen': (124, 252, 0), 'lemonchiffon': (255, 250, 205),
'lightblue': (173, 216, 230), 'lightcoral': (240, 128, 128), 'lightcyan': (224, 255, 255),
'lightgoldenrodyellow': (250, 250, 210), 'lightgray': (211, 211, 211), 'lightgrey': (211, 211, 211),
'lightgreen': (144, 238, 144), 'lightpink': (255, 182, 193), 'lightsalmon': (255, 160, 122),
'lightseagreen': (32, 178, 170), 'lightskyblue': (135, 206, 250), 'lightslategray': (119, 136, 153),
'lightslategrey': (119, 136, 153), 'lightsteelblue': (176, 196, 222), 'lightyellow': (255, 255, 224),
'lime': (0, 255, 0), 'limegreen': (50, 205, 50), 'linen': (250, 240, 230), 'magenta': (255, 0, 255),
'maroon': (128, 0, 0), 'mediumaquamarine': (102, 205, 170), 'mediumblue': (0, 0, 205),
'mediumorchid': (186, 85, 211), 'mediumpurple': (147, 112, 219), 'mediumseagreen': (60, 179, 113),
'mediumslateblue': (123, 104, 238), 'mediumspringgreen': (0, 250, 154),
'mediumturquoise': (72, 209, 204), 'mediumvioletred': (199, 21, 133), 'midnightblue': (25, 25, 112),
'mintcream': (245, 255, 250), 'mistyrose': (255, 228, 225), 'moccasin': (255, 228, 181),
'navajowhite': (255, 222, 173), 'navy': (0, 0, 128), 'navyblue': (0, 0, 128),
'oldlace': (253, 245, 230), 'olive': (128, 128, 0), 'olivedrab': (107, 142, 35),
'orange': (255, 165, 0), 'orangered': (255, 69, 0), 'orchid': (218, 112, 214),
'palegoldenrod': (238, 232, 170), 'palegreen': (152, 251, 152), 'paleturquoise': (175, 238, 238),
'palevioletred': (219, 112, 147), 'papayawhip': (255, 239, 213), 'peachpuff': (255, 218, 185),
'peru': (205, 133, 63), 'pink': (255, 192, 203), 'plum': (221, 160, 221), 'powderblue': (176, 224, 230),
'purple': (128, 0, 128), 'rebeccapurple': (102, 51, 153), 'red': (255, 0, 0),
'rosybrown': (188, 143, 143), 'royalblue': (65, 105, 225), 'saddlebrown': (139, 69, 19),
'salmon': (250, 128, 114), 'sandybrown': (244, 164, 96), 'seagreen': (46, 139, 87),
'seashell': (255, 245, 238), 'sienna': (160, 82, 45), 'silver': (192, 192, 192),
'skyblue': (135, 206, 235), 'slateblue': (106, 90, 205), 'slategray': (112, 128, 144),
'slategrey': (112, 128, 144), 'snow': (255, 250, 250), 'springgreen': (0, 255, 127),
'steelblue': (70, 130, 180), 'tan': (210, 180, 140), 'teal': (0, 128, 128), 'thistle': (216, 191, 216),
'tomato': (255, 99, 71), 'turquoise': (64, 224, 208), 'violet': (238, 130, 238),
'wheat': (245, 222, 179), 'white': (255, 255, 255), 'whitesmoke': (245, 245, 245),
'yellow': (255, 255, 0), 'yellowgreen': (154, 205, 50)
}
valid_locations = { # x, y in 90*90
'in the center': (45, 45),
'on the left': (15, 45),
'on the right': (75, 45),
'on the top': (45, 15),
'on the bottom': (45, 75),
'on the top-left': (15, 15),
'on the top-right': (75, 15),
'on the bottom-left': (15, 75),
'on the bottom-right': (75, 75)
}
valid_offsets = { # x, y in 90*90
'no offset': (0, 0),
'slightly to the left': (-10, 0),
'slightly to the right': (10, 0),
'slightly to the upper': (0, -10),
'slightly to the lower': (0, 10),
'slightly to the upper-left': (-10, -10),
'slightly to the upper-right': (10, -10),
'slightly to the lower-left': (-10, 10),
'slightly to the lower-right': (10, 10)}
valid_areas = { # w, h in 90*90
"a small square area": (50, 50),
"a small vertical area": (40, 60),
"a small horizontal area": (60, 40),
"a medium-sized square area": (60, 60),
"a medium-sized vertical area": (50, 80),
"a medium-sized horizontal area": (80, 50),
"a large square area": (70, 70),
"a large vertical area": (60, 90),
"a large horizontal area": (90, 60)
}
def closest_name(input_str, options):
input_str = input_str.lower()
closest_match = difflib.get_close_matches(input_str, list(options.keys()), n=1, cutoff=0.5)
assert isinstance(closest_match, list) and len(closest_match) > 0, f'The value [{input_str}] is not valid!'
result = closest_match[0]
if result != input_str:
print(f'Automatically corrected [{input_str}] -> [{result}].')
return result
def safe_str(x):
return x.strip(',. ') + '.'
def binary_nonzero_positions(n, offset=0):
binary_str = bin(n)[2:]
positions = [i + offset for i, bit in enumerate(reversed(binary_str)) if bit == '1']
return positions
class Canvas:
@staticmethod
def from_bot_response(response: str):
matched = re.search(r'```python\n(.*?)\n```', response, re.DOTALL)
assert matched, 'Response does not contain codes!'
code_content = matched.group(1)
assert 'canvas = Canvas()' in code_content, 'Code block must include valid canvas var!'
local_vars = {'Canvas': Canvas}
exec(code_content, {}, local_vars)
canvas = local_vars.get('canvas', None)
assert isinstance(canvas, Canvas), 'Code block must produce valid canvas var!'
return canvas
def __init__(self):
self.components = []
self.color = None
self.record_tags = True
self.prefixes = []
self.suffixes = []
return
def set_global_description(self, description: str, detailed_descriptions: list[str], tags: str,
HTML_web_color_name: str):
assert isinstance(description, str), 'Global description is not valid!'
assert isinstance(detailed_descriptions, list) and all(isinstance(item, str) for item in detailed_descriptions), \
'Global detailed_descriptions is not valid!'
assert isinstance(tags, str), 'Global tags is not valid!'
HTML_web_color_name = closest_name(HTML_web_color_name, valid_colors)
self.color = np.array([[valid_colors[HTML_web_color_name]]], dtype=np.uint8)
self.prefixes = [description]
self.suffixes = detailed_descriptions
if self.record_tags:
self.suffixes = self.suffixes + [tags]
self.prefixes = [safe_str(x) for x in self.prefixes]
self.suffixes = [safe_str(x) for x in self.suffixes]
return
def add_local_description(self, location: str, offset: str, area: str, distance_to_viewer: float, description: str,
detailed_descriptions: list[str], tags: str, atmosphere: str, style: str,
quality_meta: str, HTML_web_color_name: str):
assert isinstance(description, str), 'Local description is wrong!'
assert isinstance(distance_to_viewer, (int, float)) and distance_to_viewer > 0, \
f'The distance_to_viewer for [{description}] is not positive float number!'
assert isinstance(detailed_descriptions, list) and all(isinstance(item, str) for item in detailed_descriptions), \
f'The detailed_descriptions for [{description}] is not valid!'
assert isinstance(tags, str), f'The tags for [{description}] is not valid!'
assert isinstance(atmosphere, str), f'The atmosphere for [{description}] is not valid!'
assert isinstance(style, str), f'The style for [{description}] is not valid!'
assert isinstance(quality_meta, str), f'The quality_meta for [{description}] is not valid!'
location = closest_name(location, valid_locations)
offset = closest_name(offset, valid_offsets)
area = closest_name(area, valid_areas)
HTML_web_color_name = closest_name(HTML_web_color_name, valid_colors)
xb, yb = valid_locations[location]
xo, yo = valid_offsets[offset]
w, h = valid_areas[area]
rect = (yb + yo - h // 2, yb + yo + h // 2, xb + xo - w // 2, xb + xo + w // 2)
rect = [max(0, min(90, i)) for i in rect]
color = np.array([[valid_colors[HTML_web_color_name]]], dtype=np.uint8)
prefixes = self.prefixes + [description]
suffixes = detailed_descriptions
if self.record_tags:
suffixes = suffixes + [tags, atmosphere, style, quality_meta]
prefixes = [safe_str(x) for x in prefixes]
suffixes = [safe_str(x) for x in suffixes]
self.components.append(dict(
rect=rect,
distance_to_viewer=distance_to_viewer,
color=color,
prefixes=prefixes,
suffixes=suffixes
))
return
def process(self):
# sort components
self.components = sorted(self.components, key=lambda x: x['distance_to_viewer'], reverse=True)
# compute initial latent
initial_latent = np.zeros(shape=(90, 90, 3), dtype=np.float32) + self.color
for component in self.components:
a, b, c, d = component['rect']
initial_latent[a:b, c:d] = 0.7 * component['color'] + 0.3 * initial_latent[a:b, c:d]
initial_latent = initial_latent.clip(0, 255).astype(np.uint8)
# compute conditions
bag_of_conditions = [
dict(mask=np.ones(shape=(90, 90), dtype=np.float32), prefixes=self.prefixes, suffixes=self.suffixes)
]
for i, component in enumerate(self.components):
a, b, c, d = component['rect']
m = np.zeros(shape=(90, 90), dtype=np.float32)
m[a:b, c:d] = 1.0
bag_of_conditions.append(dict(
mask=m,
prefixes=component['prefixes'],
suffixes=component['suffixes']
))
return dict(
initial_latent=initial_latent,
bag_of_conditions=bag_of_conditions,
)
|