File size: 19,826 Bytes
d6c416b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import gradio as gr
import json
import re
from datetime import datetime
from typing import Literal
import os
import importlib
from llm_handler import send_to_llm
from main import generate_data, PROMPT_1
from topics import TOPICS
from system_messages import SYSTEM_MESSAGES_VODALUS
import random

ANNOTATION_CONFIG_FILE = "annotation_config.json"
OUTPUT_FILE_PATH = "dataset.jsonl"

def load_annotation_config():
    try:
        with open(ANNOTATION_CONFIG_FILE, 'r') as f:
            return json.load(f)
    except FileNotFoundError:
        return {
            "quality_scale": {
                "name": "Relevance for Training",
                "description": "Rate the relevance of this entry for training",
                "scale": [
                    {"value": "1", "label": "Invalid"},
                    {"value": "2", "label": "Somewhat invalid"},
                    {"value": "3", "label": "Neutral"},
                    {"value": "4", "label": "Somewhat valid"},
                    {"value": "5", "label": "Valid"}
                ]
            },
            "tag_categories": [
                {
                    "name": "High Quality Indicators",
                    "type": "multiple",
                    "tags": ["Well-formatted", "Informative", "Coherent", "Engaging"]
                },
                {
                    "name": "Low Quality Indicators",
                    "type": "multiple",
                    "tags": ["Poorly formatted", "Lacks context", "Repetitive", "Irrelevant"]
                },
                {
                    "name": "Content Warnings",
                    "type": "multiple",
                    "tags": ["Offensive language", "Hate speech", "Violence", "Adult content"]
                }
            ],
            "free_text_fields": [
                {
                    "name": "Additional Notes",
                    "description": "Any other observations or comments"
                }
            ]
        }

def save_annotation_config(config):
    with open(ANNOTATION_CONFIG_FILE, 'w') as f:
        json.dump(config, f, indent=2)

def load_jsonl_dataset(file_path):
    if not os.path.exists(file_path):
        return []
    with open(file_path, 'r') as f:
        return [json.loads(line.strip()) for line in f if line.strip()]

def save_row(file_path, index, row_data):
    with open(file_path, 'r') as f:
        lines = f.readlines()
    
    lines[index] = row_data + '\n'
    
    with open(file_path, 'w') as f:
        f.writelines(lines)
    
    return f"Row {index} saved successfully"

def get_row(file_path, index):
    data = load_jsonl_dataset(file_path)
    if not data:
        return "", 0
    if 0 <= index < len(data):
        return json.dumps(data[index], indent=2), len(data)
    return "", len(data)

def json_to_markdown(json_str):
    try:
        data = json.loads(json_str)
        markdown = f"# System\n\n{data['system']}\n\n# Instruction\n\n{data['instruction']}\n\n# Response\n\n{data['response']}"
        return markdown
    except json.JSONDecodeError:
        return "Error: Invalid JSON format"

def markdown_to_json(markdown_str):
    sections = re.split(r'#\s+(System|Instruction|Response)\s*\n', markdown_str)
    if len(sections) != 7:  # Should be: ['', 'System', content, 'Instruction', content, 'Response', content]
        return "Error: Invalid markdown format"
    
    json_data = {
        "system": sections[2].strip(),
        "instruction": sections[4].strip(),
        "response": sections[6].strip()
    }
    return json.dumps(json_data, indent=2)

def navigate_rows(file_path: str, current_index: int, direction: Literal[-1, 1], metadata_config):
    new_index = max(0, current_index + direction)
    return load_and_show_row(file_path, new_index, metadata_config)

def load_and_show_row(file_path, index, metadata_config):
    row_data, total = get_row(file_path, index)
    if not row_data:
        return ("", index, total, "3", [], [], [], "")
    
    try:
        data = json.loads(row_data)
    except json.JSONDecodeError:
        return (row_data, index, total, "3", [], [], [], "Error: Invalid JSON")
    
    metadata = data.get("metadata", {}).get("annotation", {})
    
    quality = metadata.get("quality", "3")
    high_quality_tags = metadata.get("tags", {}).get("high_quality", [])
    low_quality_tags = metadata.get("tags", {}).get("low_quality", [])
    toxic_tags = metadata.get("tags", {}).get("toxic", [])
    other = metadata.get("free_text", {}).get("Additional Notes", "")
    
    return (row_data, index, total, quality, 
            high_quality_tags, low_quality_tags, toxic_tags, other)

def save_row_with_metadata(file_path, index, row_data, config, quality, high_quality_tags, low_quality_tags, toxic_tags, other):
    data = json.loads(row_data)
    metadata = {
        "annotation": {
            "quality": quality,
            "tags": {
                "high_quality": high_quality_tags,
                "low_quality": low_quality_tags,
                "toxic": toxic_tags
            },
            "free_text": {
                "Additional Notes": other
            }
        }
    }
    
    data["metadata"] = metadata
    return save_row(file_path, index, json.dumps(data))

def update_annotation_ui(config):
    quality_choices = [(item["value"], item["label"]) for item in config["quality_scale"]["scale"]]
    quality_label = gr.Radio(
        label=config["quality_scale"]["name"],
        choices=quality_choices,
        info=config["quality_scale"]["description"]
    )
    
    tag_components = []
    for category in config["tag_categories"]:
        tag_component = gr.CheckboxGroup(
            label=category["name"],
            choices=category["tags"]
        )
        tag_components.append(tag_component)
    
    other_description = gr.Textbox(
        label=config["free_text_fields"][0]["name"],
        lines=3
    )
    
    return quality_label, *tag_components, other_description

def load_config_to_ui(config):
    return (
        config["quality_scale"]["name"],
        config["quality_scale"]["description"],
        [[item["value"], item["label"]] for item in config["quality_scale"]["scale"]],
        [[cat["name"], cat["type"], ", ".join(cat["tags"])] for cat in config["tag_categories"]],
        [[field["name"], field["description"]] for field in config["free_text_fields"]]
    )

def save_config_from_ui(name, description, scale, categories, fields):
    new_config = {
        "quality_scale": {
            "name": name,
            "description": description,
            "scale": [{"value": row[0], "label": row[1]} for row in scale]
        },
        "tag_categories": [{"name": row[0], "type": row[1], "tags": row[2].split(", ")} for row in categories],
        "free_text_fields": [{"name": row[0], "description": row[1]} for row in fields]
    }
    save_annotation_config(new_config)
    return "Configuration saved successfully", new_config

# Add this new function to generate the preview
def generate_preview(row_data, quality, high_quality_tags, low_quality_tags, toxic_tags, other):
    try:
        data = json.loads(row_data)
        metadata = {
            "annotation": {
                "quality": quality,
                "tags": {
                    "high_quality": high_quality_tags,
                    "low_quality": low_quality_tags,
                    "toxic": toxic_tags
                },
                "free_text": {
                    "Additional Notes": other
                }
            }
        }
        data["metadata"] = metadata
        return json.dumps(data, indent=2)
    except json.JSONDecodeError:
        return "Error: Invalid JSON in the current row data"

def load_dataset_config():
    # Load VODALUS_SYSTEM_MESSAGE from system_messages.py
    with open("system_messages.py", "r") as f:
        system_messages_content = f.read()
        vodalus_system_message = re.search(r'SYSTEM_MESSAGES_VODALUS = \[(.*?)\]', system_messages_content, re.DOTALL).group(1).strip()[3:-3]  # Extract the content between triple quotes

    # Load PROMPT_1 from main.py
    with open("main.py", "r") as f:
        main_content = f.read()
        prompt_1 = re.search(r'PROMPT_1 = """(.*?)"""', main_content, re.DOTALL).group(1).strip()

    # Load TOPICS from topics.py
    topics_module = importlib.import_module("topics")
    topics_list = topics_module.TOPICS

    return vodalus_system_message, prompt_1, [[topic] for topic in topics_list]

def save_dataset_config(system_messages, prompt_1, topics):
    # Save VODALUS_SYSTEM_MESSAGE to system_messages.py
    with open("system_messages.py", "w") as f:
        f.write(f'SYSTEM_MESSAGES_VODALUS = [\n"""\n{system_messages}\n""",\n]\n')
    
    # Save PROMPT_1 to main.py
    with open("main.py", "r") as f:
        main_content = f.read()
    
    updated_main_content = re.sub(
        r'PROMPT_1 = """.*?"""',
        f'PROMPT_1 = """\n{prompt_1}\n"""',
        main_content,
        flags=re.DOTALL
    )
    
    with open("main.py", "w") as f:
        f.write(updated_main_content)
    
    # Save TOPICS to topics.py
    topics_content = "TOPICS = [\n"
    for topic in topics:
        topics_content += f'    "{topic[0]}",\n'
    topics_content += "]\n"
    
    with open("topics.py", "w") as f:
        f.write(topics_content)
    
    return "Dataset configuration saved successfully"

# Modify the chat_with_llm function to use Gradio's built-in async capabilities
def chat_with_llm(message, history, selected_llm):
    try:
        msg_list = [{"role": "system", "content": "You are an AI assistant helping with dataset annotation and quality checking."}]
        for h in history:
            msg_list.append({"role": "user", "content": h[0]})
            msg_list.append({"role": "assistant", "content": h[1]})
        msg_list.append({"role": "user", "content": message})

        response, _ = send_to_llm(selected_llm, msg_list)
        
        return history + [[message, response]]
    except Exception as e:
        print(f"Error in chat_with_llm: {str(e)}")
        return history + [[message, f"Error: {str(e)}"]]

def update_chat_context(row_data, index, total, quality, high_quality_tags, low_quality_tags, toxic_tags, other):
    context = f"""Current app state:
    Row: {index + 1}/{total}
    Data: {row_data}
    Quality: {quality}
    High Quality Tags: {', '.join(high_quality_tags)}
    Low Quality Tags: {', '.join(low_quality_tags)}
    Toxic Tags: {', '.join(toxic_tags)}
    Additional Notes: {other}
    """
    return [[None, context]]  # Return as a list of message pairs

# Add this function to handle dataset generation
async def run_generate_dataset(num_workers, num_generations, output_file_path, selected_llm):
    generated_data = []
    for _ in range(num_generations):
        topic_selected = random.choice(TOPICS)
        system_message_selected = random.choice(SYSTEM_MESSAGES_VODALUS)
        data = await generate_data(topic_selected, PROMPT_1, system_message_selected, output_file_path, selected_llm)
        if data:
            generated_data.append(json.dumps(data))
    
    # Write the generated data to the output file
    with open(output_file_path, 'a') as f:
        for entry in generated_data:
            f.write(entry + '\n')
    
    return f"Generated {num_generations} entries and saved to {output_file_path}", "\n".join(generated_data[:5]) + "\n..."

demo = gr.Blocks()

with demo:
    gr.Markdown("# JSONL Dataset Editor and Annotation Tool")

    config = gr.State(load_annotation_config())

    with gr.Row():
        with gr.Column(scale=3):
            with gr.Tab("Dataset Editor"):
                with gr.Row():
                    file_path = gr.Textbox(label="JSONL File Path", value=OUTPUT_FILE_PATH)
                    load_button = gr.Button("Load Dataset")
                
                with gr.Row():
                    prev_button = gr.Button("← Previous")
                    row_index = gr.Number(value=0, label="Current Row", precision=0)
                    total_rows = gr.Number(value=0, label="Total Rows", precision=0)
                    next_button = gr.Button("Next →")
                
                with gr.Row():
                    with gr.Column(scale=3):
                        row_editor = gr.TextArea(label="Edit Row", lines=20)
                    
                    with gr.Column(scale=2):
                        quality_label = gr.Radio(label="Relevance for Training", choices=[])
                        tag_components = [gr.CheckboxGroup(label=f"Tag Group {i+1}", choices=[]) for i in range(3)]
                        other_description = gr.Textbox(label="Additional annotations", lines=3)
                
                with gr.Row():
                    to_markdown_button = gr.Button("Convert to Markdown")
                    to_json_button = gr.Button("Convert to JSON")
                    preview_button = gr.Button("Preview with Metadata")
                    save_row_button = gr.Button("Save Current Row", variant="primary")
                
                preview_output = gr.TextArea(label="Preview", lines=20, interactive=False)
                editor_status = gr.Textbox(label="Editor Status")

            with gr.Tab("Annotation Configuration"):
                with gr.Row():
                    with gr.Column():
                        quality_scale_name = gr.Textbox(label="Quality Scale Name")
                        quality_scale_description = gr.Textbox(label="Quality Scale Description")
                        quality_scale = gr.Dataframe(
                            headers=["Value", "Label"],
                            datatype=["str", "str"],
                            label="Quality Scale",
                            interactive=True
                        )
                
                with gr.Row():
                    tag_categories = gr.Dataframe(
                        headers=["Name", "Type", "Tags"],
                        datatype=["str", "str", "str"],
                        label="Tag Categories",
                        interactive=True
                    )
                
                with gr.Row():
                    free_text_fields = gr.Dataframe(
                        headers=["Name", "Description"],
                        datatype=["str", "str"],
                        label="Free Text Fields",
                        interactive=True
                    )
                
                save_config_btn = gr.Button("Save Configuration")
                config_status = gr.Textbox(label="Status")

            with gr.Tab("Dataset Configuration"):
                with gr.Row():
                    vodalus_system_message = gr.TextArea(label="VODALUS_SYSTEM_MESSAGE", lines=10)
                    prompt_1 = gr.TextArea(label="PROMPT_1", lines=10)
                
                with gr.Row():
                    topics = gr.Dataframe(
                        headers=["Topic"],
                        datatype=["str"],
                        label="TOPICS",
                        interactive=True
                    )
                
                save_dataset_config_btn = gr.Button("Save Dataset Configuration")
                dataset_config_status = gr.Textbox(label="Status")

            with gr.Tab("Dataset Generation"):
                with gr.Row():
                    num_workers = gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Number of Workers")
                    num_generations = gr.Number(value=10, label="Number of Generations", precision=0)
                
                with gr.Row():
                    output_file_path = gr.Textbox(label="Output File Path", value=OUTPUT_FILE_PATH)
                
                start_generation_btn = gr.Button("Start Generation")
                generation_status = gr.Textbox(label="Generation Status")
                generation_output = gr.TextArea(label="Generation Output", lines=10)

        with gr.Column(scale=1):
            gr.Markdown("## AI Assistant")
            selected_llm = gr.Radio(["local-model", "anything-llm"], label="Select LLM", value="local-model")
            chatbot = gr.Chatbot(height=600)
            msg = gr.Textbox(label="Chat with AI Assistant")
            clear = gr.Button("Clear")

    load_button.click(
        load_and_show_row,
        inputs=[file_path, gr.Number(value=0), config],
        outputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description]
    ).then(
        update_annotation_ui,
        inputs=[config],
        outputs=[quality_label, *tag_components, other_description]
    )

    prev_button.click(
        navigate_rows,
        inputs=[file_path, row_index, gr.Number(value=-1), config],
        outputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description]
    ).then(
        update_annotation_ui,
        inputs=[config],
        outputs=[quality_label, *tag_components, other_description]
    )

    next_button.click(
        navigate_rows,
        inputs=[file_path, row_index, gr.Number(value=1), config],
        outputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description]
    ).then(
        update_annotation_ui,
        inputs=[config],
        outputs=[quality_label, *tag_components, other_description]
    )

    save_row_button.click(
        save_row_with_metadata,
        inputs=[file_path, row_index, row_editor, config, quality_label, 
                tag_components[0], tag_components[1], tag_components[2], other_description],
        outputs=[editor_status]
    ).then(
        lambda: "",
        outputs=[preview_output]
    )

    to_markdown_button.click(
        json_to_markdown,
        inputs=[row_editor],
        outputs=[row_editor]
    )

    to_json_button.click(
        markdown_to_json,
        inputs=[row_editor],
        outputs=[row_editor]
    )

    demo.load(
        load_config_to_ui,
        inputs=[config],
        outputs=[quality_scale_name, quality_scale_description, quality_scale, tag_categories, free_text_fields]
    ).then(
        update_annotation_ui,
        inputs=[config],
        outputs=[quality_label, *tag_components, other_description]
    )

    save_config_btn.click(
        save_config_from_ui,
        inputs=[quality_scale_name, quality_scale_description, quality_scale, tag_categories, free_text_fields],
        outputs=[config_status, config]
    ).then(
        update_annotation_ui,
        inputs=[config],
        outputs=[quality_label, *tag_components, other_description]
    )

    preview_button.click(
        generate_preview,
        inputs=[row_editor, quality_label, *tag_components, other_description],
        outputs=[preview_output]
    )

    demo.load(
        load_dataset_config,
        outputs=[vodalus_system_message, prompt_1, topics]
    )

    save_dataset_config_btn.click(
        save_dataset_config,
        inputs=[vodalus_system_message, prompt_1, topics],
        outputs=[dataset_config_status]
    )

    start_generation_btn.click(
        run_generate_dataset,
        inputs=[num_workers, num_generations, output_file_path, selected_llm],
        outputs=[generation_status, generation_output]
    )

    msg.submit(chat_with_llm, [msg, chatbot, selected_llm], [chatbot])
    clear.click(lambda: None, None, chatbot, queue=False)

    # Update chat context when navigating rows or loading dataset
    for button in [load_button, prev_button, next_button]:
        button.click(
            update_chat_context,
            inputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description],
            outputs=[chatbot]
        )

if __name__ == "__main__":
    demo.launch(share=True)