File size: 19,531 Bytes
d6c416b 4538810 d6c416b d13268c d6c416b d13268c af1c430 d6c416b 4538810 d6c416b d13268c af1c430 d6c416b af1c430 d6c416b af1c430 d6c416b af1c430 d6c416b 9cb780e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import gradio as gr
import json
import re
from datetime import datetime
from typing import Literal
import os
import importlib
from llm_handler import send_to_llm, agent, settings
from main import generate_data, PROMPT_1
from topics import TOPICS
from system_messages import SYSTEM_MESSAGES_VODALUS
import random
ANNOTATION_CONFIG_FILE = "annotation_config.json"
OUTPUT_FILE_PATH = "dataset.jsonl"
def load_annotation_config():
try:
with open(ANNOTATION_CONFIG_FILE, 'r') as f:
return json.load(f)
except FileNotFoundError:
return {
"quality_scale": {
"name": "Relevance for Training",
"description": "Rate the relevance of this entry for training",
"scale": [
{"value": "1", "label": "Invalid"},
{"value": "2", "label": "Somewhat invalid"},
{"value": "3", "label": "Neutral"},
{"value": "4", "label": "Somewhat valid"},
{"value": "5", "label": "Valid"}
]
},
"tag_categories": [
{
"name": "High Quality Indicators",
"type": "multiple",
"tags": ["Well-formatted", "Informative", "Coherent", "Engaging"]
},
{
"name": "Low Quality Indicators",
"type": "multiple",
"tags": ["Poorly formatted", "Lacks context", "Repetitive", "Irrelevant"]
},
{
"name": "Content Warnings",
"type": "multiple",
"tags": ["Offensive language", "Hate speech", "Violence", "Adult content"]
}
],
"free_text_fields": [
{
"name": "Additional Notes",
"description": "Any other observations or comments"
}
]
}
def save_annotation_config(config):
with open(ANNOTATION_CONFIG_FILE, 'w') as f:
json.dump(config, f, indent=2)
def load_jsonl_dataset(file_path):
if not os.path.exists(file_path):
return []
with open(file_path, 'r') as f:
return [json.loads(line.strip()) for line in f if line.strip()]
def save_row(file_path, index, row_data):
with open(file_path, 'r') as f:
lines = f.readlines()
lines[index] = row_data + '\n'
with open(file_path, 'w') as f:
f.writelines(lines)
return f"Row {index} saved successfully"
def get_row(file_path, index):
data = load_jsonl_dataset(file_path)
if not data:
return "", 0
if 0 <= index < len(data):
return json.dumps(data[index], indent=2), len(data)
return "", len(data)
def json_to_markdown(json_str):
try:
data = json.loads(json_str)
markdown = f"# System\n\n{data['system']}\n\n# Instruction\n\n{data['instruction']}\n\n# Response\n\n{data['response']}"
return markdown
except json.JSONDecodeError:
return "Error: Invalid JSON format"
def markdown_to_json(markdown_str):
sections = re.split(r'#\s+(System|Instruction|Response)\s*\n', markdown_str)
if len(sections) != 7: # Should be: ['', 'System', content, 'Instruction', content, 'Response', content]
return "Error: Invalid markdown format"
json_data = {
"system": sections[2].strip(),
"instruction": sections[4].strip(),
"response": sections[6].strip()
}
return json.dumps(json_data, indent=2)
def navigate_rows(file_path: str, current_index: int, direction: Literal[-1, 1], metadata_config):
new_index = max(0, current_index + direction)
return load_and_show_row(file_path, new_index, metadata_config)
def load_and_show_row(file_path, index, metadata_config):
row_data, total = get_row(file_path, index)
if not row_data:
return ("", index, total, "3", [], [], [], "")
try:
data = json.loads(row_data)
except json.JSONDecodeError:
return (row_data, index, total, "3", [], [], [], "Error: Invalid JSON")
metadata = data.get("metadata", {}).get("annotation", {})
quality = metadata.get("quality", "3")
high_quality_tags = metadata.get("tags", {}).get("high_quality", [])
low_quality_tags = metadata.get("tags", {}).get("low_quality", [])
toxic_tags = metadata.get("tags", {}).get("toxic", [])
other = metadata.get("free_text", {}).get("Additional Notes", "")
return (row_data, index, total, quality,
high_quality_tags, low_quality_tags, toxic_tags, other)
def save_row_with_metadata(file_path, index, row_data, config, quality, high_quality_tags, low_quality_tags, toxic_tags, other):
data = json.loads(row_data)
metadata = {
"annotation": {
"quality": quality,
"tags": {
"high_quality": high_quality_tags,
"low_quality": low_quality_tags,
"toxic": toxic_tags
},
"free_text": {
"Additional Notes": other
}
}
}
data["metadata"] = metadata
return save_row(file_path, index, json.dumps(data))
def update_annotation_ui(config):
quality_choices = [(item["value"], item["label"]) for item in config["quality_scale"]["scale"]]
quality_label = gr.Radio(
label=config["quality_scale"]["name"],
choices=quality_choices,
info=config["quality_scale"]["description"]
)
tag_components = []
for category in config["tag_categories"]:
tag_component = gr.CheckboxGroup(
label=category["name"],
choices=category["tags"]
)
tag_components.append(tag_component)
other_description = gr.Textbox(
label=config["free_text_fields"][0]["name"],
lines=3
)
return quality_label, *tag_components, other_description
def load_config_to_ui(config):
return (
config["quality_scale"]["name"],
config["quality_scale"]["description"],
[[item["value"], item["label"]] for item in config["quality_scale"]["scale"]],
[[cat["name"], cat["type"], ", ".join(cat["tags"])] for cat in config["tag_categories"]],
[[field["name"], field["description"]] for field in config["free_text_fields"]]
)
def save_config_from_ui(name, description, scale, categories, fields):
new_config = {
"quality_scale": {
"name": name,
"description": description,
"scale": [{"value": row[0], "label": row[1]} for row in scale]
},
"tag_categories": [{"name": row[0], "type": row[1], "tags": row[2].split(", ")} for row in categories],
"free_text_fields": [{"name": row[0], "description": row[1]} for row in fields]
}
save_annotation_config(new_config)
return "Configuration saved successfully", new_config
# Add this new function to generate the preview
def generate_preview(row_data, quality, high_quality_tags, low_quality_tags, toxic_tags, other):
try:
data = json.loads(row_data)
metadata = {
"annotation": {
"quality": quality,
"tags": {
"high_quality": high_quality_tags,
"low_quality": low_quality_tags,
"toxic": toxic_tags
},
"free_text": {
"Additional Notes": other
}
}
}
data["metadata"] = metadata
return json.dumps(data, indent=2)
except json.JSONDecodeError:
return "Error: Invalid JSON in the current row data"
def load_dataset_config():
# Load VODALUS_SYSTEM_MESSAGE from system_messages.py
with open("system_messages.py", "r") as f:
system_messages_content = f.read()
vodalus_system_message = re.search(r'SYSTEM_MESSAGES_VODALUS = \[(.*?)\]', system_messages_content, re.DOTALL).group(1).strip()[3:-3] # Extract the content between triple quotes
# Load PROMPT_1 from main.py
with open("main.py", "r") as f:
main_content = f.read()
prompt_1 = re.search(r'PROMPT_1 = """(.*?)"""', main_content, re.DOTALL).group(1).strip()
# Load TOPICS from topics.py
topics_module = importlib.import_module("topics")
topics_list = topics_module.TOPICS
return vodalus_system_message, prompt_1, [[topic] for topic in topics_list]
def save_dataset_config(system_messages, prompt_1, topics):
# Save VODALUS_SYSTEM_MESSAGE to system_messages.py
with open("system_messages.py", "w") as f:
f.write(f'SYSTEM_MESSAGES_VODALUS = [\n"""\n{system_messages}\n""",\n]\n')
# Save PROMPT_1 to main.py
with open("main.py", "r") as f:
main_content = f.read()
updated_main_content = re.sub(
r'PROMPT_1 = """.*?"""',
f'PROMPT_1 = """\n{prompt_1}\n"""',
main_content,
flags=re.DOTALL
)
with open("main.py", "w") as f:
f.write(updated_main_content)
# Save TOPICS to topics.py
topics_content = "TOPICS = [\n"
for topic in topics:
topics_content += f' "{topic[0]}",\n'
topics_content += "]\n"
with open("topics.py", "w") as f:
f.write(topics_content)
return "Dataset configuration saved successfully"
def chat_with_llm(message, history):
try:
msg_list = [{"role": "system", "content": "You are an AI assistant helping with dataset annotation and quality checking."}]
for h in history:
msg_list.append({"role": "user", "content": h[0]})
msg_list.append({"role": "assistant", "content": h[1]})
msg_list.append({"role": "user", "content": message})
response, _ = send_to_llm(agent, msg_list)
return history + [[message, response]]
except Exception as e:
print(f"Error in chat_with_llm: {str(e)}")
return history + [[message, f"Error: {str(e)}"]]
def update_chat_context(row_data, index, total, quality, high_quality_tags, low_quality_tags, toxic_tags, other):
context = f"""Current app state:
Row: {index + 1}/{total}
Data: {row_data}
Quality: {quality}
High Quality Tags: {', '.join(high_quality_tags)}
Low Quality Tags: {', '.join(low_quality_tags)}
Toxic Tags: {', '.join(toxic_tags)}
Additional Notes: {other}
"""
return [[None, context]] # Return as a list of message pairs
async def run_generate_dataset(num_workers, num_generations, output_file_path):
generated_data = []
for _ in range(num_generations):
topic_selected = random.choice(TOPICS)
system_message_selected = random.choice(SYSTEM_MESSAGES_VODALUS)
data = await generate_data(topic_selected, PROMPT_1, system_message_selected, output_file_path)
if data:
generated_data.append(json.dumps(data))
# Write the generated data to the output file
with open(output_file_path, 'a') as f:
for entry in generated_data:
f.write(entry + '\n')
return f"Generated {num_generations} entries and saved to {output_file_path}", "\n".join(generated_data[:5]) + "\n..."
demo = gr.Blocks()
with demo:
gr.Markdown("# JSONL Dataset Editor and Annotation Tool")
config = gr.State(load_annotation_config())
with gr.Row():
with gr.Column(scale=3):
with gr.Tab("Dataset Editor"):
with gr.Row():
file_path = gr.Textbox(label="JSONL File Path", value=OUTPUT_FILE_PATH)
load_button = gr.Button("Load Dataset")
with gr.Row():
prev_button = gr.Button("← Previous")
row_index = gr.Number(value=0, label="Current Row", precision=0)
total_rows = gr.Number(value=0, label="Total Rows", precision=0)
next_button = gr.Button("Next →")
with gr.Row():
with gr.Column(scale=3):
row_editor = gr.TextArea(label="Edit Row", lines=20)
with gr.Column(scale=2):
quality_label = gr.Radio(label="Relevance for Training", choices=[])
tag_components = [gr.CheckboxGroup(label=f"Tag Group {i+1}", choices=[]) for i in range(3)]
other_description = gr.Textbox(label="Additional annotations", lines=3)
with gr.Row():
to_markdown_button = gr.Button("Convert to Markdown")
to_json_button = gr.Button("Convert to JSON")
preview_button = gr.Button("Preview with Metadata")
save_row_button = gr.Button("Save Current Row", variant="primary")
preview_output = gr.TextArea(label="Preview", lines=20, interactive=False)
editor_status = gr.Textbox(label="Editor Status")
with gr.Tab("Annotation Configuration"):
with gr.Row():
with gr.Column():
quality_scale_name = gr.Textbox(label="Quality Scale Name")
quality_scale_description = gr.Textbox(label="Quality Scale Description")
quality_scale = gr.Dataframe(
headers=["Value", "Label"],
datatype=["str", "str"],
label="Quality Scale",
interactive=True
)
with gr.Row():
tag_categories = gr.Dataframe(
headers=["Name", "Type", "Tags"],
datatype=["str", "str", "str"],
label="Tag Categories",
interactive=True
)
with gr.Row():
free_text_fields = gr.Dataframe(
headers=["Name", "Description"],
datatype=["str", "str"],
label="Free Text Fields",
interactive=True
)
save_config_btn = gr.Button("Save Configuration")
config_status = gr.Textbox(label="Status")
with gr.Tab("Dataset Configuration"):
with gr.Row():
vodalus_system_message = gr.TextArea(label="VODALUS_SYSTEM_MESSAGE", lines=10)
prompt_1 = gr.TextArea(label="PROMPT_1", lines=10)
with gr.Row():
topics = gr.Dataframe(
headers=["Topic"],
datatype=["str"],
label="TOPICS",
interactive=True
)
save_dataset_config_btn = gr.Button("Save Dataset Configuration")
dataset_config_status = gr.Textbox(label="Status")
with gr.Tab("Dataset Generation"):
with gr.Row():
num_workers = gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Number of Workers")
num_generations = gr.Number(value=10, label="Number of Generations", precision=0)
with gr.Row():
output_file_path = gr.Textbox(label="Output File Path", value=OUTPUT_FILE_PATH)
start_generation_btn = gr.Button("Start Generation")
generation_status = gr.Textbox(label="Generation Status")
generation_output = gr.TextArea(label="Generation Output", lines=10)
with gr.Column(scale=1):
gr.Markdown("## AI Assistant")
chatbot = gr.Chatbot(height=600)
msg = gr.Textbox(label="Chat with AI Assistant")
clear = gr.Button("Clear")
load_button.click(
load_and_show_row,
inputs=[file_path, gr.Number(value=0), config],
outputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description]
).then(
update_annotation_ui,
inputs=[config],
outputs=[quality_label, *tag_components, other_description]
)
prev_button.click(
navigate_rows,
inputs=[file_path, row_index, gr.Number(value=-1), config],
outputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description]
).then(
update_annotation_ui,
inputs=[config],
outputs=[quality_label, *tag_components, other_description]
)
next_button.click(
navigate_rows,
inputs=[file_path, row_index, gr.Number(value=1), config],
outputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description]
).then(
update_annotation_ui,
inputs=[config],
outputs=[quality_label, *tag_components, other_description]
)
save_row_button.click(
save_row_with_metadata,
inputs=[file_path, row_index, row_editor, config, quality_label,
tag_components[0], tag_components[1], tag_components[2], other_description],
outputs=[editor_status]
).then(
lambda: "",
outputs=[preview_output]
)
to_markdown_button.click(
json_to_markdown,
inputs=[row_editor],
outputs=[row_editor]
)
to_json_button.click(
markdown_to_json,
inputs=[row_editor],
outputs=[row_editor]
)
demo.load(
load_config_to_ui,
inputs=[config],
outputs=[quality_scale_name, quality_scale_description, quality_scale, tag_categories, free_text_fields]
).then(
update_annotation_ui,
inputs=[config],
outputs=[quality_label, *tag_components, other_description]
)
save_config_btn.click(
save_config_from_ui,
inputs=[quality_scale_name, quality_scale_description, quality_scale, tag_categories, free_text_fields],
outputs=[config_status, config]
).then(
update_annotation_ui,
inputs=[config],
outputs=[quality_label, *tag_components, other_description]
)
preview_button.click(
generate_preview,
inputs=[row_editor, quality_label, *tag_components, other_description],
outputs=[preview_output]
)
demo.load(
load_dataset_config,
outputs=[vodalus_system_message, prompt_1, topics]
)
save_dataset_config_btn.click(
save_dataset_config,
inputs=[vodalus_system_message, prompt_1, topics],
outputs=[dataset_config_status]
)
start_generation_btn.click(
run_generate_dataset,
inputs=[num_workers, num_generations, output_file_path],
outputs=[generation_status, generation_output]
)
msg.submit(chat_with_llm, [msg, chatbot], [chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
# Update chat context when navigating rows or loading dataset
for button in [load_button, prev_button, next_button]:
button.click(
update_chat_context,
inputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description],
outputs=[chatbot]
)
if __name__ == "__main__":
demo.launch(share=True)
|