import gradio as gr import json import re from datetime import datetime from typing import Literal import os import importlib from llm_handler import send_to_llm, agent, settings from main import generate_data, PROMPT_1 from topics import TOPICS from system_messages import SYSTEM_MESSAGES_VODALUS import random ANNOTATION_CONFIG_FILE = "annotation_config.json" OUTPUT_FILE_PATH = "dataset.jsonl" def load_annotation_config(): try: with open(ANNOTATION_CONFIG_FILE, 'r') as f: return json.load(f) except FileNotFoundError: return { "quality_scale": { "name": "Relevance for Training", "description": "Rate the relevance of this entry for training", "scale": [ {"value": "1", "label": "Invalid"}, {"value": "2", "label": "Somewhat invalid"}, {"value": "3", "label": "Neutral"}, {"value": "4", "label": "Somewhat valid"}, {"value": "5", "label": "Valid"} ] }, "tag_categories": [ { "name": "High Quality Indicators", "type": "multiple", "tags": ["Well-formatted", "Informative", "Coherent", "Engaging"] }, { "name": "Low Quality Indicators", "type": "multiple", "tags": ["Poorly formatted", "Lacks context", "Repetitive", "Irrelevant"] }, { "name": "Content Warnings", "type": "multiple", "tags": ["Offensive language", "Hate speech", "Violence", "Adult content"] } ], "free_text_fields": [ { "name": "Additional Notes", "description": "Any other observations or comments" } ] } def save_annotation_config(config): with open(ANNOTATION_CONFIG_FILE, 'w') as f: json.dump(config, f, indent=2) def load_jsonl_dataset(file_path): if not os.path.exists(file_path): return [] with open(file_path, 'r') as f: return [json.loads(line.strip()) for line in f if line.strip()] def save_row(file_path, index, row_data): with open(file_path, 'r') as f: lines = f.readlines() lines[index] = row_data + '\n' with open(file_path, 'w') as f: f.writelines(lines) return f"Row {index} saved successfully" def get_row(file_path, index): data = load_jsonl_dataset(file_path) if not data: return "", 0 if 0 <= index < len(data): return json.dumps(data[index], indent=2), len(data) return "", len(data) def json_to_markdown(json_str): try: data = json.loads(json_str) markdown = f"# System\n\n{data['system']}\n\n# Instruction\n\n{data['instruction']}\n\n# Response\n\n{data['response']}" return markdown except json.JSONDecodeError: return "Error: Invalid JSON format" def markdown_to_json(markdown_str): sections = re.split(r'#\s+(System|Instruction|Response)\s*\n', markdown_str) if len(sections) != 7: # Should be: ['', 'System', content, 'Instruction', content, 'Response', content] return "Error: Invalid markdown format" json_data = { "system": sections[2].strip(), "instruction": sections[4].strip(), "response": sections[6].strip() } return json.dumps(json_data, indent=2) def navigate_rows(file_path: str, current_index: int, direction: Literal[-1, 1], metadata_config): new_index = max(0, current_index + direction) return load_and_show_row(file_path, new_index, metadata_config) def load_and_show_row(file_path, index, metadata_config): row_data, total = get_row(file_path, index) if not row_data: return ("", index, total, "3", [], [], [], "") try: data = json.loads(row_data) except json.JSONDecodeError: return (row_data, index, total, "3", [], [], [], "Error: Invalid JSON") metadata = data.get("metadata", {}).get("annotation", {}) quality = metadata.get("quality", "3") high_quality_tags = metadata.get("tags", {}).get("high_quality", []) low_quality_tags = metadata.get("tags", {}).get("low_quality", []) toxic_tags = metadata.get("tags", {}).get("toxic", []) other = metadata.get("free_text", {}).get("Additional Notes", "") return (row_data, index, total, quality, high_quality_tags, low_quality_tags, toxic_tags, other) def save_row_with_metadata(file_path, index, row_data, config, quality, high_quality_tags, low_quality_tags, toxic_tags, other): data = json.loads(row_data) metadata = { "annotation": { "quality": quality, "tags": { "high_quality": high_quality_tags, "low_quality": low_quality_tags, "toxic": toxic_tags }, "free_text": { "Additional Notes": other } } } data["metadata"] = metadata return save_row(file_path, index, json.dumps(data)) def update_annotation_ui(config): quality_choices = [(item["value"], item["label"]) for item in config["quality_scale"]["scale"]] quality_label = gr.Radio( label=config["quality_scale"]["name"], choices=quality_choices, info=config["quality_scale"]["description"] ) tag_components = [] for category in config["tag_categories"]: tag_component = gr.CheckboxGroup( label=category["name"], choices=category["tags"] ) tag_components.append(tag_component) other_description = gr.Textbox( label=config["free_text_fields"][0]["name"], lines=3 ) return quality_label, *tag_components, other_description def load_config_to_ui(config): return ( config["quality_scale"]["name"], config["quality_scale"]["description"], [[item["value"], item["label"]] for item in config["quality_scale"]["scale"]], [[cat["name"], cat["type"], ", ".join(cat["tags"])] for cat in config["tag_categories"]], [[field["name"], field["description"]] for field in config["free_text_fields"]] ) def save_config_from_ui(name, description, scale, categories, fields): new_config = { "quality_scale": { "name": name, "description": description, "scale": [{"value": row[0], "label": row[1]} for row in scale] }, "tag_categories": [{"name": row[0], "type": row[1], "tags": row[2].split(", ")} for row in categories], "free_text_fields": [{"name": row[0], "description": row[1]} for row in fields] } save_annotation_config(new_config) return "Configuration saved successfully", new_config # Add this new function to generate the preview def generate_preview(row_data, quality, high_quality_tags, low_quality_tags, toxic_tags, other): try: data = json.loads(row_data) metadata = { "annotation": { "quality": quality, "tags": { "high_quality": high_quality_tags, "low_quality": low_quality_tags, "toxic": toxic_tags }, "free_text": { "Additional Notes": other } } } data["metadata"] = metadata return json.dumps(data, indent=2) except json.JSONDecodeError: return "Error: Invalid JSON in the current row data" def load_dataset_config(): # Load VODALUS_SYSTEM_MESSAGE from system_messages.py with open("system_messages.py", "r") as f: system_messages_content = f.read() vodalus_system_message = re.search(r'SYSTEM_MESSAGES_VODALUS = \[(.*?)\]', system_messages_content, re.DOTALL).group(1).strip()[3:-3] # Extract the content between triple quotes # Load PROMPT_1 from main.py with open("main.py", "r") as f: main_content = f.read() prompt_1 = re.search(r'PROMPT_1 = """(.*?)"""', main_content, re.DOTALL).group(1).strip() # Load TOPICS from topics.py topics_module = importlib.import_module("topics") topics_list = topics_module.TOPICS return vodalus_system_message, prompt_1, [[topic] for topic in topics_list] def save_dataset_config(system_messages, prompt_1, topics): # Save VODALUS_SYSTEM_MESSAGE to system_messages.py with open("system_messages.py", "w") as f: f.write(f'SYSTEM_MESSAGES_VODALUS = [\n"""\n{system_messages}\n""",\n]\n') # Save PROMPT_1 to main.py with open("main.py", "r") as f: main_content = f.read() updated_main_content = re.sub( r'PROMPT_1 = """.*?"""', f'PROMPT_1 = """\n{prompt_1}\n"""', main_content, flags=re.DOTALL ) with open("main.py", "w") as f: f.write(updated_main_content) # Save TOPICS to topics.py topics_content = "TOPICS = [\n" for topic in topics: topics_content += f' "{topic[0]}",\n' topics_content += "]\n" with open("topics.py", "w") as f: f.write(topics_content) return "Dataset configuration saved successfully" def chat_with_llm(message, history): try: msg_list = [{"role": "system", "content": "You are an AI assistant helping with dataset annotation and quality checking."}] for h in history: msg_list.append({"role": "user", "content": h[0]}) msg_list.append({"role": "assistant", "content": h[1]}) msg_list.append({"role": "user", "content": message}) response, _ = send_to_llm(agent, msg_list) return history + [[message, response]] except Exception as e: print(f"Error in chat_with_llm: {str(e)}") return history + [[message, f"Error: {str(e)}"]] def update_chat_context(row_data, index, total, quality, high_quality_tags, low_quality_tags, toxic_tags, other): context = f"""Current app state: Row: {index + 1}/{total} Data: {row_data} Quality: {quality} High Quality Tags: {', '.join(high_quality_tags)} Low Quality Tags: {', '.join(low_quality_tags)} Toxic Tags: {', '.join(toxic_tags)} Additional Notes: {other} """ return [[None, context]] # Return as a list of message pairs async def run_generate_dataset(num_workers, num_generations, output_file_path): generated_data = [] for _ in range(num_generations): topic_selected = random.choice(TOPICS) system_message_selected = random.choice(SYSTEM_MESSAGES_VODALUS) data = await generate_data(topic_selected, PROMPT_1, system_message_selected, output_file_path) if data: generated_data.append(json.dumps(data)) # Write the generated data to the output file with open(output_file_path, 'a') as f: for entry in generated_data: f.write(entry + '\n') return f"Generated {num_generations} entries and saved to {output_file_path}", "\n".join(generated_data[:5]) + "\n..." demo = gr.Blocks() with demo: gr.Markdown("# JSONL Dataset Editor and Annotation Tool") config = gr.State(load_annotation_config()) with gr.Row(): with gr.Column(scale=3): with gr.Tab("Dataset Editor"): with gr.Row(): file_path = gr.Textbox(label="JSONL File Path", value=OUTPUT_FILE_PATH) load_button = gr.Button("Load Dataset") with gr.Row(): prev_button = gr.Button("← Previous") row_index = gr.Number(value=0, label="Current Row", precision=0) total_rows = gr.Number(value=0, label="Total Rows", precision=0) next_button = gr.Button("Next →") with gr.Row(): with gr.Column(scale=3): row_editor = gr.TextArea(label="Edit Row", lines=20) with gr.Column(scale=2): quality_label = gr.Radio(label="Relevance for Training", choices=[]) tag_components = [gr.CheckboxGroup(label=f"Tag Group {i+1}", choices=[]) for i in range(3)] other_description = gr.Textbox(label="Additional annotations", lines=3) with gr.Row(): to_markdown_button = gr.Button("Convert to Markdown") to_json_button = gr.Button("Convert to JSON") preview_button = gr.Button("Preview with Metadata") save_row_button = gr.Button("Save Current Row", variant="primary") preview_output = gr.TextArea(label="Preview", lines=20, interactive=False) editor_status = gr.Textbox(label="Editor Status") with gr.Tab("Annotation Configuration"): with gr.Row(): with gr.Column(): quality_scale_name = gr.Textbox(label="Quality Scale Name") quality_scale_description = gr.Textbox(label="Quality Scale Description") quality_scale = gr.Dataframe( headers=["Value", "Label"], datatype=["str", "str"], label="Quality Scale", interactive=True ) with gr.Row(): tag_categories = gr.Dataframe( headers=["Name", "Type", "Tags"], datatype=["str", "str", "str"], label="Tag Categories", interactive=True ) with gr.Row(): free_text_fields = gr.Dataframe( headers=["Name", "Description"], datatype=["str", "str"], label="Free Text Fields", interactive=True ) save_config_btn = gr.Button("Save Configuration") config_status = gr.Textbox(label="Status") with gr.Tab("Dataset Configuration"): with gr.Row(): vodalus_system_message = gr.TextArea(label="VODALUS_SYSTEM_MESSAGE", lines=10) prompt_1 = gr.TextArea(label="PROMPT_1", lines=10) with gr.Row(): topics = gr.Dataframe( headers=["Topic"], datatype=["str"], label="TOPICS", interactive=True ) save_dataset_config_btn = gr.Button("Save Dataset Configuration") dataset_config_status = gr.Textbox(label="Status") with gr.Tab("Dataset Generation"): with gr.Row(): num_workers = gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Number of Workers") num_generations = gr.Number(value=10, label="Number of Generations", precision=0) with gr.Row(): output_file_path = gr.Textbox(label="Output File Path", value=OUTPUT_FILE_PATH) start_generation_btn = gr.Button("Start Generation") generation_status = gr.Textbox(label="Generation Status") generation_output = gr.TextArea(label="Generation Output", lines=10) with gr.Column(scale=1): gr.Markdown("## AI Assistant") chatbot = gr.Chatbot(height=600) msg = gr.Textbox(label="Chat with AI Assistant") clear = gr.Button("Clear") load_button.click( load_and_show_row, inputs=[file_path, gr.Number(value=0), config], outputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description] ).then( update_annotation_ui, inputs=[config], outputs=[quality_label, *tag_components, other_description] ) prev_button.click( navigate_rows, inputs=[file_path, row_index, gr.Number(value=-1), config], outputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description] ).then( update_annotation_ui, inputs=[config], outputs=[quality_label, *tag_components, other_description] ) next_button.click( navigate_rows, inputs=[file_path, row_index, gr.Number(value=1), config], outputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description] ).then( update_annotation_ui, inputs=[config], outputs=[quality_label, *tag_components, other_description] ) save_row_button.click( save_row_with_metadata, inputs=[file_path, row_index, row_editor, config, quality_label, tag_components[0], tag_components[1], tag_components[2], other_description], outputs=[editor_status] ).then( lambda: "", outputs=[preview_output] ) to_markdown_button.click( json_to_markdown, inputs=[row_editor], outputs=[row_editor] ) to_json_button.click( markdown_to_json, inputs=[row_editor], outputs=[row_editor] ) demo.load( load_config_to_ui, inputs=[config], outputs=[quality_scale_name, quality_scale_description, quality_scale, tag_categories, free_text_fields] ).then( update_annotation_ui, inputs=[config], outputs=[quality_label, *tag_components, other_description] ) save_config_btn.click( save_config_from_ui, inputs=[quality_scale_name, quality_scale_description, quality_scale, tag_categories, free_text_fields], outputs=[config_status, config] ).then( update_annotation_ui, inputs=[config], outputs=[quality_label, *tag_components, other_description] ) preview_button.click( generate_preview, inputs=[row_editor, quality_label, *tag_components, other_description], outputs=[preview_output] ) demo.load( load_dataset_config, outputs=[vodalus_system_message, prompt_1, topics] ) save_dataset_config_btn.click( save_dataset_config, inputs=[vodalus_system_message, prompt_1, topics], outputs=[dataset_config_status] ) start_generation_btn.click( run_generate_dataset, inputs=[num_workers, num_generations, output_file_path], outputs=[generation_status, generation_output] ) msg.submit(chat_with_llm, [msg, chatbot], [chatbot]) clear.click(lambda: None, None, chatbot, queue=False) # Update chat context when navigating rows or loading dataset for button in [load_button, prev_button, next_button]: button.click( update_chat_context, inputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description], outputs=[chatbot] ) if __name__ == "__main__": demo.launch(share=True)