File size: 17,352 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import json
from abc import ABC, abstractmethod
from collections.abc import Generator
from typing import Optional, Union

from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentScratchpadUnit
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
    AssistantPromptMessage,
    PromptMessage,
    ToolPromptMessage,
    UserPromptMessage,
)
from core.ops.ops_trace_manager import TraceQueueManager
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool.tool import Tool
from core.tools.tool_engine import ToolEngine
from models.model import Message


class CotAgentRunner(BaseAgentRunner, ABC):
    _is_first_iteration = True
    _ignore_observation_providers = ["wenxin"]
    _historic_prompt_messages: list[PromptMessage] = None
    _agent_scratchpad: list[AgentScratchpadUnit] = None
    _instruction: str = None
    _query: str = None
    _prompt_messages_tools: list[PromptMessage] = None

    def run(
        self,
        message: Message,
        query: str,
        inputs: dict[str, str],
    ) -> Union[Generator, LLMResult]:
        """
        Run Cot agent application
        """
        app_generate_entity = self.application_generate_entity
        self._repack_app_generate_entity(app_generate_entity)
        self._init_react_state(query)

        trace_manager = app_generate_entity.trace_manager

        # check model mode
        if "Observation" not in app_generate_entity.model_conf.stop:
            if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
                app_generate_entity.model_conf.stop.append("Observation")

        app_config = self.app_config

        # init instruction
        inputs = inputs or {}
        instruction = app_config.prompt_template.simple_prompt_template
        self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)

        iteration_step = 1
        max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1

        # convert tools into ModelRuntime Tool format
        tool_instances, self._prompt_messages_tools = self._init_prompt_tools()

        function_call_state = True
        llm_usage = {"usage": None}
        final_answer = ""

        def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
            if not final_llm_usage_dict["usage"]:
                final_llm_usage_dict["usage"] = usage
            else:
                llm_usage = final_llm_usage_dict["usage"]
                llm_usage.prompt_tokens += usage.prompt_tokens
                llm_usage.completion_tokens += usage.completion_tokens
                llm_usage.prompt_price += usage.prompt_price
                llm_usage.completion_price += usage.completion_price
                llm_usage.total_price += usage.total_price

        model_instance = self.model_instance

        while function_call_state and iteration_step <= max_iteration_steps:
            # continue to run until there is not any tool call
            function_call_state = False

            if iteration_step == max_iteration_steps:
                # the last iteration, remove all tools
                self._prompt_messages_tools = []

            message_file_ids = []

            agent_thought = self.create_agent_thought(
                message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
            )

            if iteration_step > 1:
                self.queue_manager.publish(
                    QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
                )

            # recalc llm max tokens
            prompt_messages = self._organize_prompt_messages()
            self.recalc_llm_max_tokens(self.model_config, prompt_messages)
            # invoke model
            chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
                prompt_messages=prompt_messages,
                model_parameters=app_generate_entity.model_conf.parameters,
                tools=[],
                stop=app_generate_entity.model_conf.stop,
                stream=True,
                user=self.user_id,
                callbacks=[],
            )

            # check llm result
            if not chunks:
                raise ValueError("failed to invoke llm")

            usage_dict = {}
            react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
            scratchpad = AgentScratchpadUnit(
                agent_response="",
                thought="",
                action_str="",
                observation="",
                action=None,
            )

            # publish agent thought if it's first iteration
            if iteration_step == 1:
                self.queue_manager.publish(
                    QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
                )

            for chunk in react_chunks:
                if isinstance(chunk, AgentScratchpadUnit.Action):
                    action = chunk
                    # detect action
                    scratchpad.agent_response += json.dumps(chunk.model_dump())
                    scratchpad.action_str = json.dumps(chunk.model_dump())
                    scratchpad.action = action
                else:
                    scratchpad.agent_response += chunk
                    scratchpad.thought += chunk
                    yield LLMResultChunk(
                        model=self.model_config.model,
                        prompt_messages=prompt_messages,
                        system_fingerprint="",
                        delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
                    )

            scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
            self._agent_scratchpad.append(scratchpad)

            # get llm usage
            if "usage" in usage_dict:
                increase_usage(llm_usage, usage_dict["usage"])
            else:
                usage_dict["usage"] = LLMUsage.empty_usage()

            self.save_agent_thought(
                agent_thought=agent_thought,
                tool_name=scratchpad.action.action_name if scratchpad.action else "",
                tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
                tool_invoke_meta={},
                thought=scratchpad.thought,
                observation="",
                answer=scratchpad.agent_response,
                messages_ids=[],
                llm_usage=usage_dict["usage"],
            )

            if not scratchpad.is_final():
                self.queue_manager.publish(
                    QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
                )

            if not scratchpad.action:
                # failed to extract action, return final answer directly
                final_answer = ""
            else:
                if scratchpad.action.action_name.lower() == "final answer":
                    # action is final answer, return final answer directly
                    try:
                        if isinstance(scratchpad.action.action_input, dict):
                            final_answer = json.dumps(scratchpad.action.action_input)
                        elif isinstance(scratchpad.action.action_input, str):
                            final_answer = scratchpad.action.action_input
                        else:
                            final_answer = f"{scratchpad.action.action_input}"
                    except json.JSONDecodeError:
                        final_answer = f"{scratchpad.action.action_input}"
                else:
                    function_call_state = True
                    # action is tool call, invoke tool
                    tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
                        action=scratchpad.action,
                        tool_instances=tool_instances,
                        message_file_ids=message_file_ids,
                        trace_manager=trace_manager,
                    )
                    scratchpad.observation = tool_invoke_response
                    scratchpad.agent_response = tool_invoke_response

                    self.save_agent_thought(
                        agent_thought=agent_thought,
                        tool_name=scratchpad.action.action_name,
                        tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
                        thought=scratchpad.thought,
                        observation={scratchpad.action.action_name: tool_invoke_response},
                        tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
                        answer=scratchpad.agent_response,
                        messages_ids=message_file_ids,
                        llm_usage=usage_dict["usage"],
                    )

                    self.queue_manager.publish(
                        QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
                    )

                # update prompt tool message
                for prompt_tool in self._prompt_messages_tools:
                    self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)

            iteration_step += 1

        yield LLMResultChunk(
            model=model_instance.model,
            prompt_messages=prompt_messages,
            delta=LLMResultChunkDelta(
                index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
            ),
            system_fingerprint="",
        )

        # save agent thought
        self.save_agent_thought(
            agent_thought=agent_thought,
            tool_name="",
            tool_input={},
            tool_invoke_meta={},
            thought=final_answer,
            observation={},
            answer=final_answer,
            messages_ids=[],
        )

        self.update_db_variables(self.variables_pool, self.db_variables_pool)
        # publish end event
        self.queue_manager.publish(
            QueueMessageEndEvent(
                llm_result=LLMResult(
                    model=model_instance.model,
                    prompt_messages=prompt_messages,
                    message=AssistantPromptMessage(content=final_answer),
                    usage=llm_usage["usage"] or LLMUsage.empty_usage(),
                    system_fingerprint="",
                )
            ),
            PublishFrom.APPLICATION_MANAGER,
        )

    def _handle_invoke_action(
        self,
        action: AgentScratchpadUnit.Action,
        tool_instances: dict[str, Tool],
        message_file_ids: list[str],
        trace_manager: Optional[TraceQueueManager] = None,
    ) -> tuple[str, ToolInvokeMeta]:
        """
        handle invoke action
        :param action: action
        :param tool_instances: tool instances
        :param message_file_ids: message file ids
        :param trace_manager: trace manager
        :return: observation, meta
        """
        # action is tool call, invoke tool
        tool_call_name = action.action_name
        tool_call_args = action.action_input
        tool_instance = tool_instances.get(tool_call_name)

        if not tool_instance:
            answer = f"there is not a tool named {tool_call_name}"
            return answer, ToolInvokeMeta.error_instance(answer)

        if isinstance(tool_call_args, str):
            try:
                tool_call_args = json.loads(tool_call_args)
            except json.JSONDecodeError:
                pass

        # invoke tool
        tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
            tool=tool_instance,
            tool_parameters=tool_call_args,
            user_id=self.user_id,
            tenant_id=self.tenant_id,
            message=self.message,
            invoke_from=self.application_generate_entity.invoke_from,
            agent_tool_callback=self.agent_callback,
            trace_manager=trace_manager,
        )

        # publish files
        for message_file_id, save_as in message_files:
            if save_as:
                self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as)

            # publish message file
            self.queue_manager.publish(
                QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
            )
            # add message file ids
            message_file_ids.append(message_file_id)

        return tool_invoke_response, tool_invoke_meta

    def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
        """
        convert dict to action
        """
        return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])

    def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
        """
        fill in inputs from external data tools
        """
        for key, value in inputs.items():
            try:
                instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
            except Exception as e:
                continue

        return instruction

    def _init_react_state(self, query) -> None:
        """
        init agent scratchpad
        """
        self._query = query
        self._agent_scratchpad = []
        self._historic_prompt_messages = self._organize_historic_prompt_messages()

    @abstractmethod
    def _organize_prompt_messages(self) -> list[PromptMessage]:
        """
        organize prompt messages
        """

    def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
        """
        format assistant message
        """
        message = ""
        for scratchpad in agent_scratchpad:
            if scratchpad.is_final():
                message += f"Final Answer: {scratchpad.agent_response}"
            else:
                message += f"Thought: {scratchpad.thought}\n\n"
                if scratchpad.action_str:
                    message += f"Action: {scratchpad.action_str}\n\n"
                if scratchpad.observation:
                    message += f"Observation: {scratchpad.observation}\n\n"

        return message

    def _organize_historic_prompt_messages(
        self, current_session_messages: Optional[list[PromptMessage]] = None
    ) -> list[PromptMessage]:
        """
        organize historic prompt messages
        """
        result: list[PromptMessage] = []
        scratchpads: list[AgentScratchpadUnit] = []
        current_scratchpad: AgentScratchpadUnit = None

        for message in self.history_prompt_messages:
            if isinstance(message, AssistantPromptMessage):
                if not current_scratchpad:
                    current_scratchpad = AgentScratchpadUnit(
                        agent_response=message.content,
                        thought=message.content or "I am thinking about how to help you",
                        action_str="",
                        action=None,
                        observation=None,
                    )
                    scratchpads.append(current_scratchpad)
                if message.tool_calls:
                    try:
                        current_scratchpad.action = AgentScratchpadUnit.Action(
                            action_name=message.tool_calls[0].function.name,
                            action_input=json.loads(message.tool_calls[0].function.arguments),
                        )
                        current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
                    except:
                        pass
            elif isinstance(message, ToolPromptMessage):
                if current_scratchpad:
                    current_scratchpad.observation = message.content
            elif isinstance(message, UserPromptMessage):
                if scratchpads:
                    result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
                    scratchpads = []
                    current_scratchpad = None

                result.append(message)

        if scratchpads:
            result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))

        historic_prompts = AgentHistoryPromptTransform(
            model_config=self.model_config,
            prompt_messages=current_session_messages or [],
            history_messages=result,
            memory=self.memory,
        ).get_prompt()
        return historic_prompts