|
import logging |
|
import time |
|
|
|
import click |
|
from celery import shared_task |
|
from werkzeug.exceptions import NotFound |
|
|
|
from core.rag.datasource.vdb.vector_factory import Vector |
|
from core.rag.models.document import Document |
|
from extensions.ext_database import db |
|
from extensions.ext_redis import redis_client |
|
from models.dataset import Dataset |
|
from models.model import App, AppAnnotationSetting, MessageAnnotation |
|
from services.dataset_service import DatasetCollectionBindingService |
|
|
|
|
|
@shared_task(queue="dataset") |
|
def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str, user_id: str): |
|
""" |
|
Add annotation to index. |
|
:param job_id: job_id |
|
:param content_list: content list |
|
:param app_id: app id |
|
:param tenant_id: tenant id |
|
:param user_id: user_id |
|
|
|
""" |
|
logging.info(click.style("Start batch import annotation: {}".format(job_id), fg="green")) |
|
start_at = time.perf_counter() |
|
indexing_cache_key = "app_annotation_batch_import_{}".format(str(job_id)) |
|
|
|
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id, App.status == "normal").first() |
|
|
|
if app: |
|
try: |
|
documents = [] |
|
for content in content_list: |
|
annotation = MessageAnnotation( |
|
app_id=app.id, content=content["answer"], question=content["question"], account_id=user_id |
|
) |
|
db.session.add(annotation) |
|
db.session.flush() |
|
|
|
document = Document( |
|
page_content=content["question"], |
|
metadata={"annotation_id": annotation.id, "app_id": app_id, "doc_id": annotation.id}, |
|
) |
|
documents.append(document) |
|
|
|
app_annotation_setting = ( |
|
db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app_id).first() |
|
) |
|
|
|
if app_annotation_setting: |
|
dataset_collection_binding = ( |
|
DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type( |
|
app_annotation_setting.collection_binding_id, "annotation" |
|
) |
|
) |
|
if not dataset_collection_binding: |
|
raise NotFound("App annotation setting not found") |
|
dataset = Dataset( |
|
id=app_id, |
|
tenant_id=tenant_id, |
|
indexing_technique="high_quality", |
|
embedding_model_provider=dataset_collection_binding.provider_name, |
|
embedding_model=dataset_collection_binding.model_name, |
|
collection_binding_id=dataset_collection_binding.id, |
|
) |
|
|
|
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"]) |
|
vector.create(documents, duplicate_check=True) |
|
|
|
db.session.commit() |
|
redis_client.setex(indexing_cache_key, 600, "completed") |
|
end_at = time.perf_counter() |
|
logging.info( |
|
click.style( |
|
"Build index successful for batch import annotation: {} latency: {}".format( |
|
job_id, end_at - start_at |
|
), |
|
fg="green", |
|
) |
|
) |
|
except Exception as e: |
|
db.session.rollback() |
|
redis_client.setex(indexing_cache_key, 600, "error") |
|
indexing_error_msg_key = "app_annotation_batch_import_error_msg_{}".format(str(job_id)) |
|
redis_client.setex(indexing_error_msg_key, 600, str(e)) |
|
logging.exception("Build index for batch import annotations failed") |
|
|