|
from core.model_runtime.entities.model_entities import DefaultParameterName |
|
|
|
PARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = { |
|
DefaultParameterName.TEMPERATURE: { |
|
"label": { |
|
"en_US": "Temperature", |
|
"zh_Hans": "温度", |
|
}, |
|
"type": "float", |
|
"help": { |
|
"en_US": "Controls randomness. Lower temperature results in less random completions." |
|
" As the temperature approaches zero, the model will become deterministic and repetitive." |
|
" Higher temperature results in more random completions.", |
|
"zh_Hans": "温度控制随机性。较低的温度会导致较少的随机完成。随着温度接近零,模型将变得确定性和重复性。" |
|
"较高的温度会导致更多的随机完成。", |
|
}, |
|
"required": False, |
|
"default": 0.0, |
|
"min": 0.0, |
|
"max": 1.0, |
|
"precision": 2, |
|
}, |
|
DefaultParameterName.TOP_P: { |
|
"label": { |
|
"en_US": "Top P", |
|
"zh_Hans": "Top P", |
|
}, |
|
"type": "float", |
|
"help": { |
|
"en_US": "Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options" |
|
" are considered.", |
|
"zh_Hans": "通过核心采样控制多样性:0.5表示考虑了一半的所有可能性加权选项。", |
|
}, |
|
"required": False, |
|
"default": 1.0, |
|
"min": 0.0, |
|
"max": 1.0, |
|
"precision": 2, |
|
}, |
|
DefaultParameterName.TOP_K: { |
|
"label": { |
|
"en_US": "Top K", |
|
"zh_Hans": "Top K", |
|
}, |
|
"type": "int", |
|
"help": { |
|
"en_US": "Limits the number of tokens to consider for each step by keeping only the k most likely tokens.", |
|
"zh_Hans": "通过只保留每一步中最可能的 k 个标记来限制要考虑的标记数量。", |
|
}, |
|
"required": False, |
|
"default": 50, |
|
"min": 1, |
|
"max": 100, |
|
"precision": 0, |
|
}, |
|
DefaultParameterName.PRESENCE_PENALTY: { |
|
"label": { |
|
"en_US": "Presence Penalty", |
|
"zh_Hans": "存在惩罚", |
|
}, |
|
"type": "float", |
|
"help": { |
|
"en_US": "Applies a penalty to the log-probability of tokens already in the text.", |
|
"zh_Hans": "对文本中已有的标记的对数概率施加惩罚。", |
|
}, |
|
"required": False, |
|
"default": 0.0, |
|
"min": 0.0, |
|
"max": 1.0, |
|
"precision": 2, |
|
}, |
|
DefaultParameterName.FREQUENCY_PENALTY: { |
|
"label": { |
|
"en_US": "Frequency Penalty", |
|
"zh_Hans": "频率惩罚", |
|
}, |
|
"type": "float", |
|
"help": { |
|
"en_US": "Applies a penalty to the log-probability of tokens that appear in the text.", |
|
"zh_Hans": "对文本中出现的标记的对数概率施加惩罚。", |
|
}, |
|
"required": False, |
|
"default": 0.0, |
|
"min": 0.0, |
|
"max": 1.0, |
|
"precision": 2, |
|
}, |
|
DefaultParameterName.MAX_TOKENS: { |
|
"label": { |
|
"en_US": "Max Tokens", |
|
"zh_Hans": "最大标记", |
|
}, |
|
"type": "int", |
|
"help": { |
|
"en_US": "Specifies the upper limit on the length of generated results." |
|
" If the generated results are truncated, you can increase this parameter.", |
|
"zh_Hans": "指定生成结果长度的上限。如果生成结果截断,可以调大该参数。", |
|
}, |
|
"required": False, |
|
"default": 64, |
|
"min": 1, |
|
"max": 2048, |
|
"precision": 0, |
|
}, |
|
DefaultParameterName.RESPONSE_FORMAT: { |
|
"label": { |
|
"en_US": "Response Format", |
|
"zh_Hans": "回复格式", |
|
}, |
|
"type": "string", |
|
"help": { |
|
"en_US": "Set a response format, ensure the output from llm is a valid code block as possible," |
|
" such as JSON, XML, etc.", |
|
"zh_Hans": "设置一个返回格式,确保llm的输出尽可能是有效的代码块,如JSON、XML等", |
|
}, |
|
"required": False, |
|
"options": ["JSON", "XML"], |
|
}, |
|
DefaultParameterName.JSON_SCHEMA: { |
|
"label": { |
|
"en_US": "JSON Schema", |
|
}, |
|
"type": "text", |
|
"help": { |
|
"en_US": "Set a response json schema will ensure LLM to adhere it.", |
|
"zh_Hans": "设置返回的json schema,llm将按照它返回", |
|
}, |
|
"required": False, |
|
}, |
|
} |
|
|