import os from collections.abc import Generator import pytest from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta from core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessage from core.model_runtime.errors.validate import CredentialsValidateFailedError from core.model_runtime.model_providers.bedrock.llm.llm import BedrockLargeLanguageModel def test_validate_credentials(): model = BedrockLargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials(model="meta.llama2-13b-chat-v1", credentials={"anthropic_api_key": "invalid_key"}) model.validate_credentials( model="meta.llama2-13b-chat-v1", credentials={ "aws_region": os.getenv("AWS_REGION"), "aws_access_key": os.getenv("AWS_ACCESS_KEY"), "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), }, ) def test_invoke_model(): model = BedrockLargeLanguageModel() response = model.invoke( model="meta.llama2-13b-chat-v1", credentials={ "aws_region": os.getenv("AWS_REGION"), "aws_access_key": os.getenv("AWS_ACCESS_KEY"), "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), }, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], model_parameters={"temperature": 0.0, "top_p": 1.0, "max_tokens_to_sample": 10}, stop=["How"], stream=False, user="abc-123", ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 def test_invoke_stream_model(): model = BedrockLargeLanguageModel() response = model.invoke( model="meta.llama2-13b-chat-v1", credentials={ "aws_region": os.getenv("AWS_REGION"), "aws_access_key": os.getenv("AWS_ACCESS_KEY"), "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), }, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], model_parameters={"temperature": 0.0, "max_tokens_to_sample": 100}, stream=True, user="abc-123", ) assert isinstance(response, Generator) for chunk in response: print(chunk) assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True def test_get_num_tokens(): model = BedrockLargeLanguageModel() num_tokens = model.get_num_tokens( model="meta.llama2-13b-chat-v1", credentials={ "aws_region": os.getenv("AWS_REGION"), "aws_access_key": os.getenv("AWS_ACCESS_KEY"), "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), }, messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], ) assert num_tokens == 18