Spaces:
Build error
Build error
import numpy as np | |
import nltk | |
nltk.download('punkt') | |
from nltk.stem.porter import PorterStemmer | |
stemmer = PorterStemmer() | |
def tokenize(sentence): | |
""" | |
split sentence into array of words/tokens | |
a token can be a word or punctuation character, or number | |
""" | |
return nltk.word_tokenize(sentence) | |
def stem(word): | |
""" | |
stemming = find the root form of the word | |
examples: | |
words = ["organize", "organizes", "organizing"] | |
words = [stem(w) for w in words] | |
-> ["organ", "organ", "organ"] | |
""" | |
return stemmer.stem(word.lower()) | |
def bag_of_words(tokenized_sentence, words): | |
""" | |
return bag of words array: | |
1 for each known word that exists in the sentence, 0 otherwise | |
example: | |
sentence = ["hello", "how", "are", "you"] | |
words = ["hi", "hello", "I", "you", "bye", "thank", "cool"] | |
bog = [ 0 , 1 , 0 , 1 , 0 , 0 , 0] | |
""" | |
# stem each word | |
sentence_words = [stem(word) for word in tokenized_sentence] | |
# initialize bag with 0 for each word | |
bag = np.zeros(len(words), dtype=np.float32) | |
for idx, w in enumerate(words): | |
if w in sentence_words: | |
bag[idx] = 1 | |
return bag |