Spaces:
Runtime error
Runtime error
File size: 7,946 Bytes
2b0805d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
from langchain.vectorstores.base import VectorStore
from pydantic import BaseModel, Field
from langchain.chains.base import Chain
from collections import deque
from typing import Dict, List, Optional, Any
from langchain.agents import ZeroShotAgent, AgentExecutor
from src.task_creation_chain import TaskCreationChain
from src.task_prio_chain import TaskPrioritizationChain
import streamlit as st
from langchain import LLMChain
from langchain.llms import BaseLLM
# -----------------helpers
def get_next_task(
task_creation_chain: LLMChain,
result: Dict,
task_description: str,
task_list: List[str],
objective: str,
) -> List[Dict]:
"""Get the next task."""
incomplete_tasks = ", ".join(task_list)
response = task_creation_chain.run(
result=result,
task_description=task_description,
incomplete_tasks=incomplete_tasks,
objective=objective,
)
new_tasks = response.split("\n")
return [{"task_name": task_name} for task_name in new_tasks if task_name.strip()]
def prioritize_tasks(
task_prioritization_chain: LLMChain,
this_task_id: int,
task_list: List[Dict],
objective: str,
) -> List[Dict]:
"""Prioritize tasks."""
task_names = [t["task_name"] for t in task_list]
next_task_id = int(this_task_id) + 1
response = task_prioritization_chain.run(
task_names=task_names, next_task_id=next_task_id, objective=objective
)
new_tasks = response.split("\n")
prioritized_task_list = []
for task_string in new_tasks:
if not task_string.strip():
continue
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = task_parts[0].strip()
task_name = task_parts[1].strip()
prioritized_task_list.append({"task_id": task_id, "task_name": task_name})
return prioritized_task_list
def _get_top_tasks(vectorstore, query: str, k: int) -> List[str]:
"""Get the top k tasks based on the query."""
results = vectorstore.similarity_search_with_score(query, k=k)
if not results:
return []
sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True))
return [str(item.metadata["task"]) for item in sorted_results]
def execute_task(
vectorstore, execution_chain: LLMChain, objective: str, task: str, k: int = 5
) -> str:
"""Execute a task."""
context = _get_top_tasks(vectorstore, query=objective, k=k)
return execution_chain.run(objective=objective, context=context, task=task)
# ---------------Class-------------
class BabyAGI(Chain, BaseModel):
"""Controller model for the BabyAGI agent."""
task_list: deque = Field(default_factory=deque)
task_creation_chain: TaskCreationChain = Field(...)
task_prioritization_chain: TaskPrioritizationChain = Field(...)
execution_chain: AgentExecutor = Field(...)
task_id_counter: int = Field(1)
vectorstore: VectorStore = Field(init=False)
max_iterations: Optional[int] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def add_task(self, task: Dict):
self.task_list.append(task)
def print_task_list(self):
print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
if len(self.task_list) > 1:
st.write('**Task List:** \n')
for t in self.task_list:
print(str(t["task_id"]) + ": " + t["task_name"])
if len(self.task_list) > 1:
st.write(str(t["task_id"]) + ": " + t["task_name"])
def print_next_task(self, task: Dict):
print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
print(str(task["task_name"]))
return (str(task["task_name"]))
def print_task_result(self, result: str):
print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
return(result)
@property
def input_keys(self) -> List[str]:
return ["objective"]
@property
def output_keys(self) -> List[str]:
return []
def _call(_self, inputs: Dict[str, Any]) -> Dict[str, Any]:
result_list = []
"""Run the agent."""
objective = inputs["objective"]
first_task = inputs.get("first_task", f"Make a todo list to accomplish the objective: {objective}")
_self.add_task({"task_id": 1, "task_name": first_task})
num_iters = 0
while True:
if _self.task_list:
_self.print_task_list()
# Step 1: Pull the first task
task = _self.task_list.popleft()
_self.print_next_task(task)
st.write('**Next Task:** \n')
st.write(_self.print_next_task(task))
# Step 2: Execute the task
result = execute_task(
_self.vectorstore, _self.execution_chain, objective, task["task_name"]
)
this_task_id = int(task["task_id"])
_self.print_task_result(result)
st.write('**Result from Task:** \n')
st.write(_self.print_task_result(result))
result_list.append(result)
# Step 3: Store the result in Pinecone
result_id = f"result_{task['task_id']}"
_self.vectorstore.add_texts(
texts=[result],
metadatas=[{"task": task["task_name"]}],
ids=[result_id],
)
# Step 4: Create new tasks and reprioritize task list
new_tasks = get_next_task(
_self.task_creation_chain,
result,
task["task_name"],
[t["task_name"] for t in _self.task_list],
objective,
)
for new_task in new_tasks:
_self.task_id_counter += 1
new_task.update({"task_id": _self.task_id_counter})
_self.add_task(new_task)
_self.task_list = deque(
prioritize_tasks(
_self.task_prioritization_chain,
this_task_id,
list(_self.task_list),
objective,
)
)
num_iters += 1
if _self.max_iterations is not None and num_iters == _self.max_iterations:
print(
"\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m"
)
st.success('Task Completed!', icon="✅")
break
# Create a temporary file to hold the text
with open('output.txt', 'w') as f:
for item in result_list:
f.write(item)
f.write("\n\n")
return {}
@classmethod
def from_llm(
cls,
prompt: str,
tools: list,
llm: BaseLLM,
vectorstore: VectorStore,
verbose: bool = False,
**kwargs
) -> "BabyAGI":
"""Initialize the BabyAGI Controller."""
task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose)
task_prioritization_chain = TaskPrioritizationChain.from_llm(
llm, verbose=verbose
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True
)
return cls(
task_creation_chain=task_creation_chain,
task_prioritization_chain=task_prioritization_chain,
execution_chain=agent_executor,
vectorstore=vectorstore,
**kwargs,
)
|