Shad0ws's picture
Upload 13 files
2b0805d
from langchain.vectorstores.base import VectorStore
from pydantic import BaseModel, Field
from langchain.chains.base import Chain
from collections import deque
from typing import Dict, List, Optional, Any
from langchain.agents import ZeroShotAgent, AgentExecutor
from src.task_creation_chain import TaskCreationChain
from src.task_prio_chain import TaskPrioritizationChain
import streamlit as st
from langchain import LLMChain
from langchain.llms import BaseLLM
# -----------------helpers
def get_next_task(
task_creation_chain: LLMChain,
result: Dict,
task_description: str,
task_list: List[str],
objective: str,
) -> List[Dict]:
"""Get the next task."""
incomplete_tasks = ", ".join(task_list)
response = task_creation_chain.run(
result=result,
task_description=task_description,
incomplete_tasks=incomplete_tasks,
objective=objective,
)
new_tasks = response.split("\n")
return [{"task_name": task_name} for task_name in new_tasks if task_name.strip()]
def prioritize_tasks(
task_prioritization_chain: LLMChain,
this_task_id: int,
task_list: List[Dict],
objective: str,
) -> List[Dict]:
"""Prioritize tasks."""
task_names = [t["task_name"] for t in task_list]
next_task_id = int(this_task_id) + 1
response = task_prioritization_chain.run(
task_names=task_names, next_task_id=next_task_id, objective=objective
)
new_tasks = response.split("\n")
prioritized_task_list = []
for task_string in new_tasks:
if not task_string.strip():
continue
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = task_parts[0].strip()
task_name = task_parts[1].strip()
prioritized_task_list.append({"task_id": task_id, "task_name": task_name})
return prioritized_task_list
def _get_top_tasks(vectorstore, query: str, k: int) -> List[str]:
"""Get the top k tasks based on the query."""
results = vectorstore.similarity_search_with_score(query, k=k)
if not results:
return []
sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True))
return [str(item.metadata["task"]) for item in sorted_results]
def execute_task(
vectorstore, execution_chain: LLMChain, objective: str, task: str, k: int = 5
) -> str:
"""Execute a task."""
context = _get_top_tasks(vectorstore, query=objective, k=k)
return execution_chain.run(objective=objective, context=context, task=task)
# ---------------Class-------------
class BabyAGI(Chain, BaseModel):
"""Controller model for the BabyAGI agent."""
task_list: deque = Field(default_factory=deque)
task_creation_chain: TaskCreationChain = Field(...)
task_prioritization_chain: TaskPrioritizationChain = Field(...)
execution_chain: AgentExecutor = Field(...)
task_id_counter: int = Field(1)
vectorstore: VectorStore = Field(init=False)
max_iterations: Optional[int] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def add_task(self, task: Dict):
self.task_list.append(task)
def print_task_list(self):
print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
if len(self.task_list) > 1:
st.write('**Task List:** \n')
for t in self.task_list:
print(str(t["task_id"]) + ": " + t["task_name"])
if len(self.task_list) > 1:
st.write(str(t["task_id"]) + ": " + t["task_name"])
def print_next_task(self, task: Dict):
print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
print(str(task["task_name"]))
return (str(task["task_name"]))
def print_task_result(self, result: str):
print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
return(result)
@property
def input_keys(self) -> List[str]:
return ["objective"]
@property
def output_keys(self) -> List[str]:
return []
def _call(_self, inputs: Dict[str, Any]) -> Dict[str, Any]:
result_list = []
"""Run the agent."""
objective = inputs["objective"]
first_task = inputs.get("first_task", f"Make a todo list to accomplish the objective: {objective}")
_self.add_task({"task_id": 1, "task_name": first_task})
num_iters = 0
while True:
if _self.task_list:
_self.print_task_list()
# Step 1: Pull the first task
task = _self.task_list.popleft()
_self.print_next_task(task)
st.write('**Next Task:** \n')
st.write(_self.print_next_task(task))
# Step 2: Execute the task
result = execute_task(
_self.vectorstore, _self.execution_chain, objective, task["task_name"]
)
this_task_id = int(task["task_id"])
_self.print_task_result(result)
st.write('**Result from Task:** \n')
st.write(_self.print_task_result(result))
result_list.append(result)
# Step 3: Store the result in Pinecone
result_id = f"result_{task['task_id']}"
_self.vectorstore.add_texts(
texts=[result],
metadatas=[{"task": task["task_name"]}],
ids=[result_id],
)
# Step 4: Create new tasks and reprioritize task list
new_tasks = get_next_task(
_self.task_creation_chain,
result,
task["task_name"],
[t["task_name"] for t in _self.task_list],
objective,
)
for new_task in new_tasks:
_self.task_id_counter += 1
new_task.update({"task_id": _self.task_id_counter})
_self.add_task(new_task)
_self.task_list = deque(
prioritize_tasks(
_self.task_prioritization_chain,
this_task_id,
list(_self.task_list),
objective,
)
)
num_iters += 1
if _self.max_iterations is not None and num_iters == _self.max_iterations:
print(
"\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m"
)
st.success('Task Completed!', icon="✅")
break
# Create a temporary file to hold the text
with open('output.txt', 'w') as f:
for item in result_list:
f.write(item)
f.write("\n\n")
return {}
@classmethod
def from_llm(
cls,
prompt: str,
tools: list,
llm: BaseLLM,
vectorstore: VectorStore,
verbose: bool = False,
**kwargs
) -> "BabyAGI":
"""Initialize the BabyAGI Controller."""
task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose)
task_prioritization_chain = TaskPrioritizationChain.from_llm(
llm, verbose=verbose
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True
)
return cls(
task_creation_chain=task_creation_chain,
task_prioritization_chain=task_prioritization_chain,
execution_chain=agent_executor,
vectorstore=vectorstore,
**kwargs,
)