Spaces:
Runtime error
Runtime error
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores.faiss import FAISS | |
from langchain import OpenAI, Cohere | |
from langchain.chains.qa_with_sources import load_qa_with_sources_chain | |
from embeddings import OpenAIEmbeddings | |
from langchain.llms import OpenAI | |
from langchain.docstore.document import Document | |
from langchain.vectorstores import FAISS, VectorStore | |
import docx2txt | |
from typing import List, Dict, Any | |
import re | |
import numpy as np | |
from io import StringIO | |
from io import BytesIO | |
import streamlit as st | |
from prompts import STUFF_PROMPT | |
from pypdf import PdfReader | |
from openai.error import AuthenticationError | |
import pptx | |
def parse_docx(file: BytesIO) -> str: | |
text = docx2txt.process(file) | |
# Remove multiple newlines | |
text = re.sub(r"\n\s*\n", "\n\n", text) | |
return text | |
def parse_pdf(file: BytesIO) -> List[str]: | |
pdf = PdfReader(file) | |
output = [] | |
for page in pdf.pages: | |
text = page.extract_text() | |
# Merge hyphenated words | |
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text) | |
# Fix newlines in the middle of sentences | |
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip()) | |
# Remove multiple newlines | |
text = re.sub(r"\n\s*\n", "\n\n", text) | |
output.append(text) | |
return output | |
def parse_txt(file: BytesIO) -> str: | |
text = file.read().decode("utf-8") | |
# Remove multiple newlines | |
text = re.sub(r"\n\s*\n", "\n\n", text) | |
return text | |
def parse_pptx(file: BytesIO) -> str: | |
ppt_file = pptx.Presentation(file) | |
string_data = "" | |
for slide in ppt_file.slides: | |
for shape in slide.shapes: | |
if shape.has_text_frame: | |
string_data += shape.text_frame.text + '\n' | |
return string_data | |
def parse_csv(uploaded_file): | |
# To read file as bytes: | |
#bytes_data = uploaded_file.getvalue() | |
#st.write(bytes_data) | |
# To convert to a string based IO: | |
stringio = StringIO(uploaded_file.getvalue().decode("utf-8")) | |
#st.write(stringio) | |
# To read file as string: | |
string_data = stringio.read() | |
#st.write(string_data) | |
# Can be used wherever a "file-like" object is accepted: | |
# dataframe = pd.read_csv(uploaded_file) | |
return string_data | |
def text_to_docs(text: str) -> List[Document]: | |
"""Converts a string or list of strings to a list of Documents | |
with metadata.""" | |
if isinstance(text, str): | |
# Take a single string as one page | |
text = [text] | |
page_docs = [Document(page_content=page) for page in text] | |
# Add page numbers as metadata | |
for i, doc in enumerate(page_docs): | |
doc.metadata["page"] = i + 1 | |
# Split pages into chunks | |
doc_chunks = [] | |
for doc in page_docs: | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=800, | |
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""], | |
chunk_overlap=0, | |
) | |
chunks = text_splitter.split_text(doc.page_content) | |
for i, chunk in enumerate(chunks): | |
doc = Document( | |
page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": i} | |
) | |
# Add sources a metadata | |
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}" | |
doc_chunks.append(doc) | |
return doc_chunks | |
def embed_docs(docs: List[Document]) -> VectorStore: | |
"""Embeds a list of Documents and returns a FAISS index""" | |
if not st.session_state.get("OPENAI_API_KEY"): | |
raise AuthenticationError( | |
"Enter your OpenAI API key in the sidebar. You can get a key at https://platform.openai.com/account/api-keys." | |
) | |
else: | |
# Embed the chunks | |
embeddings = OpenAIEmbeddings(openai_api_key=st.session_state.get("OPENAI_API_KEY")) # type: ignore | |
index = FAISS.from_documents(docs, embeddings) | |
return index | |
def search_docs(index: VectorStore, query: str) -> List[Document]: | |
"""Searches a FAISS index for similar chunks to the query | |
and returns a list of Documents.""" | |
# Search for similar chunks | |
docs = index.similarity_search(query, k=5) | |
return docs | |
def get_answer(docs: List[Document], query: str) -> Dict[str, Any]: | |
"""Gets an answer to a question from a list of Documents.""" | |
# Get the answer | |
chain = load_qa_with_sources_chain(OpenAI(temperature=0, openai_api_key=st.session_state.get("OPENAI_API_KEY")), chain_type="stuff", prompt=STUFF_PROMPT) # type: ignore | |
answer = chain( | |
{"input_documents": docs, "question": query}, return_only_outputs=True | |
) | |
return answer | |
def get_sources(answer: Dict[str, Any], docs: List[Document]) -> List[Document]: | |
"""Gets the source documents for an answer.""" | |
# Get sources for the answer | |
source_keys = [s for s in answer["output_text"].split("SOURCES: ")[-1].split(", ")] | |
source_docs = [] | |
for doc in docs: | |
if doc.metadata["source"] in source_keys: | |
source_docs.append(doc) | |
return source_docs | |
def wrap_text_in_html(text: str) -> str: | |
"""Wraps each text block separated by newlines in <p> tags""" | |
if isinstance(text, list): | |
# Add horizontal rules between pages | |
text = "\n<hr/>\n".join(text) | |
return "".join([f"<p>{line}</p>" for line in text.split("\n")]) |