import PIL import PIL.Image import dlib import face_alignment import numpy as np import scipy import scipy.ndimage import skimage.io as io import torch from PIL import Image from scipy.ndimage import gaussian_filter1d from tqdm import tqdm # from configs import paths_config def paste_image(inverse_transform, img, orig_image): pasted_image = orig_image.copy().convert('RGBA') projected = img.convert('RGBA').transform(orig_image.size, Image.PERSPECTIVE, inverse_transform, Image.BILINEAR) pasted_image.paste(projected, (0, 0), mask=projected) return pasted_image def get_landmark(filepath, predictor, detector=None, fa=None): """get landmark with dlib :return: np.array shape=(68, 2) """ if fa is not None: image = io.imread(filepath) lms, _, bboxes = fa.get_landmarks(image, return_bboxes=True) if len(lms) == 0: return None return lms[0] if detector is None: detector = dlib.get_frontal_face_detector() if isinstance(filepath, PIL.Image.Image): img = np.array(filepath) else: img = dlib.load_rgb_image(filepath) dets = detector(img) for k, d in enumerate(dets): shape = predictor(img, d) break else: return None t = list(shape.parts()) a = [] for tt in t: a.append([tt.x, tt.y]) lm = np.array(a) return lm def align_face(filepath_or_image, predictor, output_size, detector=None, enable_padding=False, scale=1.0): """ :param filepath: str :return: PIL Image """ c, x, y = compute_transform(filepath_or_image, predictor, detector=detector, scale=scale) quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) img = crop_image(filepath_or_image, output_size, quad, enable_padding=enable_padding) # Return aligned image. return img def crop_image(filepath, output_size, quad, enable_padding=False): x = (quad[3] - quad[1]) / 2 qsize = np.hypot(*x) * 2 # read image if isinstance(filepath, PIL.Image.Image): img = filepath else: img = PIL.Image.open(filepath) transform_size = output_size # Shrink. shrink = int(np.floor(qsize / output_size * 0.5)) if shrink > 1: rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) img = img.resize(rsize, PIL.Image.ANTIALIAS) quad /= shrink qsize /= shrink # Crop. border = max(int(np.rint(qsize * 0.1)), 3) crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) if (crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]): img = img.crop(crop) quad -= crop[0:2] # Pad. pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) if enable_padding and max(pad) > border - 4: pad = np.maximum(pad, int(np.rint(qsize * 0.3))) img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') h, w, _ = img.shape y, x, _ = np.ogrid[:h, :w, :1] mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) blur = qsize * 0.02 img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') quad += pad[:2] # Transform. img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) if output_size < transform_size: img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) return img def compute_transform(lm, predictor, detector=None, scale=1.0, fa=None): # lm = get_landmark(filepath, predictor, detector, fa) # if lm is None: # raise Exception(f'Did not detect any faces in image: {filepath}') lm_chin = lm[0: 17] # left-right lm_eyebrow_left = lm[17: 22] # left-right lm_eyebrow_right = lm[22: 27] # left-right lm_nose = lm[27: 31] # top-down lm_nostrils = lm[31: 36] # top-down lm_eye_left = lm[36: 42] # left-clockwise lm_eye_right = lm[42: 48] # left-clockwise lm_mouth_outer = lm[48: 60] # left-clockwise lm_mouth_inner = lm[60: 68] # left-clockwise # Calculate auxiliary vectors. eye_left = np.mean(lm_eye_left, axis=0) eye_right = np.mean(lm_eye_right, axis=0) eye_avg = (eye_left + eye_right) * 0.5 eye_to_eye = eye_right - eye_left mouth_left = lm_mouth_outer[0] mouth_right = lm_mouth_outer[6] mouth_avg = (mouth_left + mouth_right) * 0.5 eye_to_mouth = mouth_avg - eye_avg # Choose oriented crop rectangle. x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] x /= np.hypot(*x) x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) x *= scale y = np.flipud(x) * [-1, 1] c = eye_avg + eye_to_mouth * 0.1 return c, x, y def crop_faces(IMAGE_SIZE, files, scale, center_sigma=0.0, xy_sigma=0.0, use_fa=False, fa=None): if use_fa: if fa == None: device = 'cuda' if torch.cuda.is_available() else 'cpu' fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True, device=device) predictor = None detector = None else: fa = None predictor = None detector = None # predictor = dlib.shape_predictor(paths_config.shape_predictor_path) # detector = dlib.get_frontal_face_detector() cs, xs, ys = [], [], [] for lm, pil in tqdm(files): c, x, y = compute_transform(lm, predictor, detector=detector, scale=scale, fa=fa) cs.append(c) xs.append(x) ys.append(y) cs = np.stack(cs) xs = np.stack(xs) ys = np.stack(ys) if center_sigma != 0: cs = gaussian_filter1d(cs, sigma=center_sigma, axis=0) if xy_sigma != 0: xs = gaussian_filter1d(xs, sigma=xy_sigma, axis=0) ys = gaussian_filter1d(ys, sigma=xy_sigma, axis=0) quads = np.stack([cs - xs - ys, cs - xs + ys, cs + xs + ys, cs + xs - ys], axis=1) quads = list(quads) crops, orig_images = crop_faces_by_quads(IMAGE_SIZE, files, quads) return crops, orig_images, quads def crop_faces_by_quads(IMAGE_SIZE, files, quads): orig_images = [] crops = [] for quad, (_, path) in tqdm(zip(quads, files), total=len(quads)): crop = crop_image(path, IMAGE_SIZE, quad.copy()) orig_image = path # Image.open(path) orig_images.append(orig_image) crops.append(crop) return crops, orig_images def calc_alignment_coefficients(pa, pb): matrix = [] for p1, p2 in zip(pa, pb): matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]]) matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]]) a = np.matrix(matrix, dtype=float) b = np.array(pb).reshape(8) res = np.dot(np.linalg.inv(a.T * a) * a.T, b) return np.array(res).reshape(8)