Spaces:
Runtime error
Runtime error
ShadowDominator
commited on
Commit
•
4ac7334
1
Parent(s):
5aa21e6
Upload 2 files
Browse files- app.py +85 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
|
6 |
+
tokenizer_sentence_analysis = AutoTokenizer.from_pretrained("finiteautomata/bertweet-base-sentiment-analysis")
|
7 |
+
model_sentence_analysis = AutoModelForSequenceClassification.from_pretrained("finiteautomata/bertweet-base-sentiment-analysis")
|
8 |
+
|
9 |
+
tokenizer_review_feedback_sentiment = AutoTokenizer.from_pretrained('nlptown/bert-base-multilingual-uncased-sentiment')
|
10 |
+
model_review_feedback_sentiment = AutoModelForSequenceClassification.from_pretrained('nlptown/bert-base-multilingual-uncased-sentiment')
|
11 |
+
|
12 |
+
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
|
13 |
+
|
14 |
+
def sentence_sentiment_model(text, tokenizer, model):
|
15 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
16 |
+
with torch.no_grad():
|
17 |
+
result = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
18 |
+
logits = result.logits.detach()
|
19 |
+
probs = torch.softmax(logits, dim=1)
|
20 |
+
pos_prob = probs[0][2].item()
|
21 |
+
neu_prob = probs[0][1].item()
|
22 |
+
neg_prob = probs[0][0].item()
|
23 |
+
return {'Positive': [round(float(pos_prob), 2)],"Neutural":[round(float(neu_prob), 2)], 'Negative': [round(float(neg_prob), 2)]}
|
24 |
+
|
25 |
+
def review_feedback_sentiment(text, tokenizer, model):
|
26 |
+
inputs = tokenizer.encode_plus(text, padding='max_length', max_length=512, return_tensors="pt")
|
27 |
+
with torch.no_grad():
|
28 |
+
result = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
29 |
+
logits = result.logits.detach()
|
30 |
+
probs = torch.softmax(logits, dim=1).detach().numpy()[0]
|
31 |
+
categories = ['Terrible', 'Poor', 'Average', 'Good', 'Excellent']
|
32 |
+
output_dict = {}
|
33 |
+
for i in range(len(categories)):
|
34 |
+
output_dict[categories[i]] = [round(float(probs[i]), 2)]
|
35 |
+
return output_dict
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
def emotion_sentiment(text):
|
40 |
+
results = classifier(text, padding='max_length', max_length=512)
|
41 |
+
return {label['label']: [label['score']] for label in results[0]}
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def sentence_analysis(text):
|
46 |
+
result = sentence_sentiment_model(text,tokenizer_sentence_analysis,model_sentence_analysis)
|
47 |
+
return result
|
48 |
+
def emotion(text):
|
49 |
+
result = emotion_sentiment(text)
|
50 |
+
return result
|
51 |
+
def review_feed_back(text):
|
52 |
+
result = review_feedback_sentiment(text,tokenizer_review_feedback_sentiment,model_review_feedback_sentiment)
|
53 |
+
return result
|
54 |
+
|
55 |
+
def selection_model(model,text):
|
56 |
+
if text == "":
|
57 |
+
return "No Text Input"
|
58 |
+
if model=="Emotion Analysis":
|
59 |
+
return emotion(text)
|
60 |
+
if model == "Review Feedback Analysis":
|
61 |
+
return review_feed_back(text)
|
62 |
+
if model == "Sentence Analysis":
|
63 |
+
return sentence_analysis(text)
|
64 |
+
return "Please select model"
|
65 |
+
|
66 |
+
|
67 |
+
paragraph = """
|
68 |
+
I woke up this morning feeling refreshed and excited for the day ahead.
|
69 |
+
"""
|
70 |
+
|
71 |
+
with gr.Blocks(title="Sentiment",css="footer {visibility: hidden}") as demo:
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column():
|
74 |
+
gr.Markdown("## Emotion, ReviewFeedback, Sentence Analysis")
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column():
|
77 |
+
drop_down_name = gr.Dropdown(choices=["Emotion Analysis", "Review Feedback Analysis", "Sentence Analysis"],label="Model")
|
78 |
+
inputs = gr.TextArea(label="sentence",value=paragraph,interactive=True)
|
79 |
+
btn = gr.Button(value="RUN")
|
80 |
+
with gr.Column():
|
81 |
+
output = gr.Label(label="output")
|
82 |
+
btn.click(fn=selection_model,inputs=[drop_down_name,inputs],outputs=[output])
|
83 |
+
demo.launch()
|
84 |
+
|
85 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.32.0
|
2 |
+
torch==2.0.0
|
3 |
+
transformers==4.28.1
|