Spaces:
Runtime error
Runtime error
shakhovak
commited on
Commit
·
706771c
1
Parent(s):
fe6f530
added files
Browse files- Dockerfile +25 -0
- app.py +36 -0
- data/scripts.pkl +3 -0
- data/scripts_reworked.pkl +3 -0
- data/scripts_vectors.pkl +3 -0
- generate_bot.py +84 -0
- requirements.txt +12 -0
- static/style.css +223 -0
- templates/chat.html +80 -0
- utils.py +256 -0
Dockerfile
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9.13
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY requirements.txt /app
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
8 |
+
|
9 |
+
COPY . /app
|
10 |
+
|
11 |
+
RUN useradd -m -u 1000 user
|
12 |
+
|
13 |
+
USER user
|
14 |
+
|
15 |
+
ENV HOME=/home/user \
|
16 |
+
PATH=/home/user/.local/bin:$PATH
|
17 |
+
|
18 |
+
WORKDIR $HOME/app
|
19 |
+
|
20 |
+
|
21 |
+
COPY --chown=user . $HOME/app
|
22 |
+
|
23 |
+
#CMD ["gunicorn", "--timeout", "1000", "app:app", "-b", "0.0.0.0:5000"]
|
24 |
+
#CMD ["python", "app.py"]
|
25 |
+
CMD ["gunicorn", "--timeout", "1000", "--workers", "2", "--worker-class", "gevent", "--worker-connections" , "100", "app:app", "-b", "0.0.0.0:7860"]
|
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request
|
2 |
+
from generate_bot import ChatBot
|
3 |
+
import asyncio
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
chatSheldon = ChatBot()
|
7 |
+
chatSheldon.load()
|
8 |
+
|
9 |
+
# this script is running flask application
|
10 |
+
|
11 |
+
|
12 |
+
@app.route("/")
|
13 |
+
async def index():
|
14 |
+
return render_template("chat.html")
|
15 |
+
|
16 |
+
|
17 |
+
async def sleep():
|
18 |
+
await asyncio.sleep(0.1)
|
19 |
+
return 0.1
|
20 |
+
|
21 |
+
|
22 |
+
@app.route("/get", methods=["GET", "POST"])
|
23 |
+
async def chat():
|
24 |
+
msg = request.form["msg"]
|
25 |
+
input = msg
|
26 |
+
await asyncio.gather(sleep(), sleep())
|
27 |
+
return get_Chat_response(input)
|
28 |
+
|
29 |
+
|
30 |
+
def get_Chat_response(text):
|
31 |
+
answer = chatSheldon.generate_response(text)
|
32 |
+
return answer
|
33 |
+
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
app.run(debug=True, host="0.0.0.0")
|
data/scripts.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02be23abb73d94025637264be0813338fba80a81eb1a95074f3437d61392cc73
|
3 |
+
size 2099433
|
data/scripts_reworked.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c0329681a10e682750117eb86c9eace5ef79af5e1c113f0af383ef814bba405
|
3 |
+
size 7686225
|
data/scripts_vectors.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1865b58f9fc16255786cfee8be7f6c120e3986ae1dc7012e07d1cee9f77bdb77
|
3 |
+
size 67336895
|
generate_bot.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import deque
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from utils import generate_response
|
5 |
+
import pandas as pd
|
6 |
+
import pickle
|
7 |
+
from utils import encode_rag, cosine_sim_rag, top_candidates
|
8 |
+
|
9 |
+
|
10 |
+
class ChatBot:
|
11 |
+
def __init__(self):
|
12 |
+
self.conversation_history = deque([], maxlen=10)
|
13 |
+
self.generative_model = None
|
14 |
+
self.generative_tokenizer = None
|
15 |
+
self.vect_data = []
|
16 |
+
self.scripts = []
|
17 |
+
self.ranking_model = None
|
18 |
+
|
19 |
+
def load(self):
|
20 |
+
""" "This method is called first to load all datasets and
|
21 |
+
model used by the chat bot; all the data to be saved in
|
22 |
+
tha data folder, models to be loaded from hugging face"""
|
23 |
+
|
24 |
+
with open("data/scripts_vectors.pkl", "rb") as fp:
|
25 |
+
self.vect_data = pickle.load(fp)
|
26 |
+
self.scripts = pd.read_pickle("data/scripts.pkl")
|
27 |
+
self.ranking_model = SentenceTransformer(
|
28 |
+
"Shakhovak/chatbot_sentence-transformer"
|
29 |
+
)
|
30 |
+
self.generative_model = AutoModelForSeq2SeqLM.from_pretrained(
|
31 |
+
"Shakhovak/flan-t5-base-sheldon-chat-v2"
|
32 |
+
)
|
33 |
+
self.generative_tokenizer = AutoTokenizer.from_pretrained(
|
34 |
+
"Shakhovak/flan-t5-base-sheldon-chat-v2"
|
35 |
+
)
|
36 |
+
|
37 |
+
def generate_response(self, utterance):
|
38 |
+
|
39 |
+
query_encoding = encode_rag(
|
40 |
+
texts=utterance,
|
41 |
+
model=self.ranking_model,
|
42 |
+
contexts=self.conversation_history,
|
43 |
+
)
|
44 |
+
|
45 |
+
bot_cosine_scores = cosine_sim_rag(
|
46 |
+
self.vect_data,
|
47 |
+
query_encoding,
|
48 |
+
)
|
49 |
+
|
50 |
+
top_scores, top_indexes = top_candidates(
|
51 |
+
bot_cosine_scores, initial_data=self.scripts
|
52 |
+
)
|
53 |
+
|
54 |
+
if top_scores[0] >= 0.89:
|
55 |
+
for index in top_indexes:
|
56 |
+
rag_answer = self.scripts.iloc[index]["answer"]
|
57 |
+
|
58 |
+
answer = generate_response(
|
59 |
+
model=self.generative_model,
|
60 |
+
tokenizer=self.generative_tokenizer,
|
61 |
+
question=utterance,
|
62 |
+
context=self.conversation_history,
|
63 |
+
top_p=0.9,
|
64 |
+
temperature=0.95,
|
65 |
+
rag_answer=rag_answer,
|
66 |
+
)
|
67 |
+
else:
|
68 |
+
answer = generate_response(
|
69 |
+
model=self.generative_model,
|
70 |
+
tokenizer=self.generative_tokenizer,
|
71 |
+
question=utterance,
|
72 |
+
context=self.conversation_history,
|
73 |
+
top_p=0.9,
|
74 |
+
temperature=0.95,
|
75 |
+
)
|
76 |
+
|
77 |
+
self.conversation_history.append(utterance)
|
78 |
+
self.conversation_history.append(answer)
|
79 |
+
return answer
|
80 |
+
|
81 |
+
|
82 |
+
# katya = ChatBot()
|
83 |
+
# katya.load()
|
84 |
+
# print(katya.generate_response("What is he doing there?"))
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.2.1
|
2 |
+
flask[async]==3.0.2
|
3 |
+
datasets==2.17.1
|
4 |
+
transformers==4.38.1
|
5 |
+
gunicorn==21.2.0
|
6 |
+
gevent>=1.4
|
7 |
+
requests==2.31.0
|
8 |
+
scikit-learn==1.4.1.post1
|
9 |
+
scipy==1.12.0
|
10 |
+
numpy==1.26.4
|
11 |
+
torch==2.2.1
|
12 |
+
sentence-transformers==2.3.1
|
static/style.css
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body,html{
|
2 |
+
height: 100%;
|
3 |
+
margin: 0;
|
4 |
+
background: rgb(44, 47, 59);
|
5 |
+
background: -webkit-linear-gradient(to right, rgb(40, 59, 34), rgb(54, 60, 70), rgb(32, 32, 43));
|
6 |
+
background: linear-gradient(to right, rgb(38, 51, 61), rgb(50, 55, 65), rgb(33, 33, 78));
|
7 |
+
}
|
8 |
+
|
9 |
+
.chat{
|
10 |
+
margin-top: auto;
|
11 |
+
margin-bottom: auto;
|
12 |
+
}
|
13 |
+
.card{
|
14 |
+
height: 500px;
|
15 |
+
border-radius: 15px !important;
|
16 |
+
background-color: rgba(0,0,0,0.4) !important;
|
17 |
+
}
|
18 |
+
.contacts_body{
|
19 |
+
padding: 0.75rem 0 !important;
|
20 |
+
overflow-y: auto;
|
21 |
+
white-space: nowrap;
|
22 |
+
}
|
23 |
+
.msg_card_body{
|
24 |
+
overflow-y: auto;
|
25 |
+
}
|
26 |
+
.card-header{
|
27 |
+
border-radius: 15px 15px 0 0 !important;
|
28 |
+
border-bottom: 0 !important;
|
29 |
+
}
|
30 |
+
.card-footer{
|
31 |
+
border-radius: 0 0 15px 15px !important;
|
32 |
+
border-top: 0 !important;
|
33 |
+
}
|
34 |
+
.container{
|
35 |
+
align-content: center;
|
36 |
+
}
|
37 |
+
.search{
|
38 |
+
border-radius: 15px 0 0 15px !important;
|
39 |
+
background-color: rgba(0,0,0,0.3) !important;
|
40 |
+
border:0 !important;
|
41 |
+
color:white !important;
|
42 |
+
}
|
43 |
+
.search:focus{
|
44 |
+
box-shadow:none !important;
|
45 |
+
outline:0px !important;
|
46 |
+
}
|
47 |
+
.type_msg{
|
48 |
+
background-color: rgba(0,0,0,0.3) !important;
|
49 |
+
border:0 !important;
|
50 |
+
color:white !important;
|
51 |
+
height: 60px !important;
|
52 |
+
overflow-y: auto;
|
53 |
+
}
|
54 |
+
.type_msg:focus{
|
55 |
+
box-shadow:none !important;
|
56 |
+
outline:0px !important;
|
57 |
+
}
|
58 |
+
.attach_btn{
|
59 |
+
border-radius: 15px 0 0 15px !important;
|
60 |
+
background-color: rgba(0,0,0,0.3) !important;
|
61 |
+
border:0 !important;
|
62 |
+
color: white !important;
|
63 |
+
cursor: pointer;
|
64 |
+
}
|
65 |
+
.send_btn{
|
66 |
+
border-radius: 0 15px 15px 0 !important;
|
67 |
+
background-color: rgba(0,0,0,0.3) !important;
|
68 |
+
border:0 !important;
|
69 |
+
color: white !important;
|
70 |
+
cursor: pointer;
|
71 |
+
}
|
72 |
+
.search_btn{
|
73 |
+
border-radius: 0 15px 15px 0 !important;
|
74 |
+
background-color: rgba(0,0,0,0.3) !important;
|
75 |
+
border:0 !important;
|
76 |
+
color: white !important;
|
77 |
+
cursor: pointer;
|
78 |
+
}
|
79 |
+
.contacts{
|
80 |
+
list-style: none;
|
81 |
+
padding: 0;
|
82 |
+
}
|
83 |
+
.contacts li{
|
84 |
+
width: 100% !important;
|
85 |
+
padding: 5px 10px;
|
86 |
+
margin-bottom: 15px !important;
|
87 |
+
}
|
88 |
+
.active{
|
89 |
+
background-color: rgba(0,0,0,0.3);
|
90 |
+
}
|
91 |
+
.user_img{
|
92 |
+
height: 70px;
|
93 |
+
width: 70px;
|
94 |
+
border:1.5px solid #f5f6fa;
|
95 |
+
|
96 |
+
}
|
97 |
+
.user_img_msg{
|
98 |
+
height: 40px;
|
99 |
+
width: 40px;
|
100 |
+
border:1.5px solid #f5f6fa;
|
101 |
+
|
102 |
+
}
|
103 |
+
.img_cont{
|
104 |
+
position: relative;
|
105 |
+
height: 70px;
|
106 |
+
width: 70px;
|
107 |
+
}
|
108 |
+
.img_cont_msg{
|
109 |
+
height: 40px;
|
110 |
+
width: 40px;
|
111 |
+
}
|
112 |
+
.online_icon{
|
113 |
+
position: absolute;
|
114 |
+
height: 15px;
|
115 |
+
width:15px;
|
116 |
+
background-color: #4cd137;
|
117 |
+
border-radius: 50%;
|
118 |
+
bottom: 0.2em;
|
119 |
+
right: 0.4em;
|
120 |
+
border:1.5px solid white;
|
121 |
+
}
|
122 |
+
.offline{
|
123 |
+
background-color: #c23616 !important;
|
124 |
+
}
|
125 |
+
.user_info{
|
126 |
+
margin-top: auto;
|
127 |
+
margin-bottom: auto;
|
128 |
+
margin-left: 15px;
|
129 |
+
}
|
130 |
+
.user_info span{
|
131 |
+
font-size: 20px;
|
132 |
+
color: white;
|
133 |
+
}
|
134 |
+
.user_info p{
|
135 |
+
font-size: 10px;
|
136 |
+
color: rgba(255,255,255,0.6);
|
137 |
+
}
|
138 |
+
.video_cam{
|
139 |
+
margin-left: 50px;
|
140 |
+
margin-top: 5px;
|
141 |
+
}
|
142 |
+
.video_cam span{
|
143 |
+
color: white;
|
144 |
+
font-size: 20px;
|
145 |
+
cursor: pointer;
|
146 |
+
margin-right: 20px;
|
147 |
+
}
|
148 |
+
.msg_cotainer{
|
149 |
+
margin-top: auto;
|
150 |
+
margin-bottom: auto;
|
151 |
+
margin-left: 10px;
|
152 |
+
border-radius: 25px;
|
153 |
+
background-color: rgb(82, 172, 255);
|
154 |
+
padding: 10px;
|
155 |
+
position: relative;
|
156 |
+
}
|
157 |
+
.msg_cotainer_send{
|
158 |
+
margin-top: auto;
|
159 |
+
margin-bottom: auto;
|
160 |
+
margin-right: 10px;
|
161 |
+
border-radius: 25px;
|
162 |
+
background-color: #58cc71;
|
163 |
+
padding: 10px;
|
164 |
+
position: relative;
|
165 |
+
}
|
166 |
+
.msg_time{
|
167 |
+
position: absolute;
|
168 |
+
left: 0;
|
169 |
+
bottom: -15px;
|
170 |
+
color: rgba(255,255,255,0.5);
|
171 |
+
font-size: 10px;
|
172 |
+
}
|
173 |
+
.msg_time_send{
|
174 |
+
position: absolute;
|
175 |
+
right:0;
|
176 |
+
bottom: -15px;
|
177 |
+
color: rgba(255,255,255,0.5);
|
178 |
+
font-size: 10px;
|
179 |
+
}
|
180 |
+
.msg_head{
|
181 |
+
position: relative;
|
182 |
+
}
|
183 |
+
#action_menu_btn{
|
184 |
+
position: absolute;
|
185 |
+
right: 10px;
|
186 |
+
top: 10px;
|
187 |
+
color: white;
|
188 |
+
cursor: pointer;
|
189 |
+
font-size: 20px;
|
190 |
+
}
|
191 |
+
.action_menu{
|
192 |
+
z-index: 1;
|
193 |
+
position: absolute;
|
194 |
+
padding: 15px 0;
|
195 |
+
background-color: rgba(0,0,0,0.5);
|
196 |
+
color: white;
|
197 |
+
border-radius: 15px;
|
198 |
+
top: 30px;
|
199 |
+
right: 15px;
|
200 |
+
display: none;
|
201 |
+
}
|
202 |
+
.action_menu ul{
|
203 |
+
list-style: none;
|
204 |
+
padding: 0;
|
205 |
+
margin: 0;
|
206 |
+
}
|
207 |
+
.action_menu ul li{
|
208 |
+
width: 100%;
|
209 |
+
padding: 10px 15px;
|
210 |
+
margin-bottom: 5px;
|
211 |
+
}
|
212 |
+
.action_menu ul li i{
|
213 |
+
padding-right: 10px;
|
214 |
+
}
|
215 |
+
.action_menu ul li:hover{
|
216 |
+
cursor: pointer;
|
217 |
+
background-color: rgba(0,0,0,0.2);
|
218 |
+
}
|
219 |
+
@media(max-width: 576px){
|
220 |
+
.contacts_card{
|
221 |
+
margin-bottom: 15px !important;
|
222 |
+
}
|
223 |
+
}
|
templates/chat.html
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<link href="//maxcdn.bootstrapcdn.com/bootstrap/4.1.1/css/bootstrap.min.css" rel="stylesheet" id="bootstrap-css">
|
2 |
+
<script src="//maxcdn.bootstrapcdn.com/bootstrap/4.1.1/js/bootstrap.min.js"></script>
|
3 |
+
<script src="//cdnjs.cloudflare.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
|
4 |
+
|
5 |
+
<!DOCTYPE html>
|
6 |
+
<html>
|
7 |
+
<head>
|
8 |
+
<title>Chatbot</title>
|
9 |
+
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css" integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO" crossorigin="anonymous">
|
10 |
+
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.5.0/css/all.css" integrity="sha384-B4dIYHKNBt8Bc12p+WXckhzcICo0wtJAoU8YZTY5qE0Id1GSseTk6S+L3BlXeVIU" crossorigin="anonymous">
|
11 |
+
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
|
12 |
+
<link rel="stylesheet" type="text/css" href="{{ url_for('static', filename='style.css')}}"/>
|
13 |
+
</head>
|
14 |
+
|
15 |
+
|
16 |
+
<body>
|
17 |
+
<div class="container-fluid h-100">
|
18 |
+
<div class="row justify-content-center h-100">
|
19 |
+
<div class="col-md-8 col-xl-6 chat">
|
20 |
+
<div class="card">
|
21 |
+
<div class="card-header msg_head">
|
22 |
+
<div class="d-flex bd-highlight">
|
23 |
+
<div class="img_cont">
|
24 |
+
<img src="https://stickerpacks.ru/wp-content/uploads/2023/04/nabor-stikerov-teorija-bolshogo-vzryva-5-dlja-telegram-3.webp" class="rounded-circle user_img">
|
25 |
+
<span class="online_icon"></span>
|
26 |
+
</div>
|
27 |
+
<div class="user_info">
|
28 |
+
<span>ChatBot</span>
|
29 |
+
<p>Ask me anything!</p>
|
30 |
+
</div>
|
31 |
+
</div>
|
32 |
+
</div>
|
33 |
+
<div id="messageFormeight" class="card-body msg_card_body">
|
34 |
+
|
35 |
+
|
36 |
+
</div>
|
37 |
+
<div class="card-footer">
|
38 |
+
<form id="messageArea" class="input-group">
|
39 |
+
<input type="text" id="text" name="msg" placeholder="Type your message..." autocomplete="off" class="form-control type_msg" required/>
|
40 |
+
<div class="input-group-append">
|
41 |
+
<button type="submit" id="send" class="input-group-text send_btn"><i class="fas fa-location-arrow"></i></button>
|
42 |
+
</div>
|
43 |
+
</form>
|
44 |
+
</div>
|
45 |
+
</div>
|
46 |
+
</div>
|
47 |
+
</div>
|
48 |
+
</div>
|
49 |
+
|
50 |
+
<script>
|
51 |
+
$(document).ready(function() {
|
52 |
+
$("#messageArea").on("submit", function(event) {
|
53 |
+
const date = new Date();
|
54 |
+
const hour = date.getHours();
|
55 |
+
const minute = date.getMinutes();
|
56 |
+
const str_time = hour+":"+minute;
|
57 |
+
var rawText = $("#text").val();
|
58 |
+
|
59 |
+
var userHtml = '<div class="d-flex justify-content-end mb-4"><div class="msg_cotainer_send">' + rawText + '<span class="msg_time_send">'+ str_time + '</span></div><div class="img_cont_msg"><img src="https://i.ibb.co/d5b84Xw/Untitled-design.png" class="rounded-circle user_img_msg"></div></div>';
|
60 |
+
|
61 |
+
$("#text").val("");
|
62 |
+
$("#messageFormeight").append(userHtml);
|
63 |
+
|
64 |
+
$.ajax({
|
65 |
+
data: {
|
66 |
+
msg: rawText,
|
67 |
+
},
|
68 |
+
type: "POST",
|
69 |
+
url: "/get",
|
70 |
+
}).done(function(data) {
|
71 |
+
var botHtml = '<div class="d-flex justify-content-start mb-4"><div class="img_cont_msg"><img src="https://stickerpacks.ru/wp-content/uploads/2023/04/nabor-stikerov-teorija-bolshogo-vzryva-5-dlja-telegram-3.webp" class="rounded-circle user_img_msg"></div><div class="msg_cotainer">' + data + '<span class="msg_time">' + str_time + '</span></div></div>';
|
72 |
+
$("#messageFormeight").append($.parseHTML(botHtml));
|
73 |
+
});
|
74 |
+
event.preventDefault();
|
75 |
+
});
|
76 |
+
});
|
77 |
+
</script>
|
78 |
+
|
79 |
+
</body>
|
80 |
+
</html>
|
utils.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
from scipy import sparse
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
|
8 |
+
def scripts_rework(path, character):
|
9 |
+
"""FOR GENERARTIVE MODEL TRAINING!!!
|
10 |
+
this functions split scripts for question, answer, context,
|
11 |
+
picks up the character, augments data for generative model training
|
12 |
+
and saves data in pickle format"""
|
13 |
+
|
14 |
+
df = pd.read_csv(path)
|
15 |
+
|
16 |
+
# split data for scenes
|
17 |
+
count = 0
|
18 |
+
df["scene_count"] = ""
|
19 |
+
for index, row in df.iterrows():
|
20 |
+
if index == 0:
|
21 |
+
df.iloc[index]["scene_count"] = count
|
22 |
+
elif row["person_scene"] == "Scene":
|
23 |
+
count += 1
|
24 |
+
df.iloc[index]["scene_count"] = count
|
25 |
+
else:
|
26 |
+
df.iloc[index]["scene_count"] = count
|
27 |
+
|
28 |
+
df = df.dropna().reset_index()
|
29 |
+
|
30 |
+
# rework scripts to filer by caracter utterances and related context
|
31 |
+
scripts = pd.DataFrame()
|
32 |
+
for index, row in df.iterrows():
|
33 |
+
if (row["person_scene"] == character) & (
|
34 |
+
df.iloc[index - 1]["person_scene"] != "Scene"
|
35 |
+
):
|
36 |
+
context = []
|
37 |
+
|
38 |
+
for i in reversed(range(2, 6)):
|
39 |
+
if (df.iloc[index - i]["person_scene"] != "Scene") & (index - i >= 0):
|
40 |
+
context.append(df.iloc[index - i]["dialogue"])
|
41 |
+
else:
|
42 |
+
break
|
43 |
+
|
44 |
+
for j in range(len(context)):
|
45 |
+
new_row = {
|
46 |
+
"answer": row["dialogue"],
|
47 |
+
"question": df.iloc[index - 1]["dialogue"],
|
48 |
+
"context": context[j:],
|
49 |
+
}
|
50 |
+
scripts = pd.concat([scripts, pd.DataFrame([new_row])])
|
51 |
+
new_row = {
|
52 |
+
"answer": row["dialogue"],
|
53 |
+
"question": df.iloc[index - 1]["dialogue"],
|
54 |
+
"context": [],
|
55 |
+
}
|
56 |
+
scripts = pd.concat([scripts, pd.DataFrame([new_row])])
|
57 |
+
|
58 |
+
elif (row["person_scene"] == character) & (
|
59 |
+
df.iloc[index - 1]["person_scene"] == "Scene"
|
60 |
+
):
|
61 |
+
context = []
|
62 |
+
new_row = {"answer": row["dialogue"], "question": "", "context": context}
|
63 |
+
scripts = pd.concat([scripts, pd.DataFrame([new_row])])
|
64 |
+
# load reworked data to pkl
|
65 |
+
scripts = scripts[scripts["question"] != ""]
|
66 |
+
scripts["context"] = scripts["context"].apply(lambda x: "".join(x))
|
67 |
+
scripts = scripts.reset_index(drop=True)
|
68 |
+
scripts.to_pickle("data/scripts_reworked.pkl")
|
69 |
+
|
70 |
+
|
71 |
+
# ===================================================
|
72 |
+
def scripts_rework_ranking(path, character):
|
73 |
+
"""FOR RAG RETRIEVAL !!!!
|
74 |
+
this functions split scripts for queation, answer, context,
|
75 |
+
picks up the cahracter and saves data in pickle format"""
|
76 |
+
|
77 |
+
df = pd.read_csv(path)
|
78 |
+
|
79 |
+
# split data for scenes
|
80 |
+
count = 0
|
81 |
+
df["scene_count"] = ""
|
82 |
+
for index, row in df.iterrows():
|
83 |
+
if index == 0:
|
84 |
+
df.iloc[index]["scene_count"] = count
|
85 |
+
elif row["person_scene"] == "Scene":
|
86 |
+
count += 1
|
87 |
+
df.iloc[index]["scene_count"] = count
|
88 |
+
else:
|
89 |
+
df.iloc[index]["scene_count"] = count
|
90 |
+
|
91 |
+
df = df.dropna().reset_index()
|
92 |
+
|
93 |
+
# rework scripts to filer by caracter utterances and related context
|
94 |
+
scripts = pd.DataFrame()
|
95 |
+
for index, row in df.iterrows():
|
96 |
+
if (row["person_scene"] == character) & (
|
97 |
+
df.iloc[index - 1]["person_scene"] != "Scene"
|
98 |
+
):
|
99 |
+
context = []
|
100 |
+
for i in reversed(range(2, 5)):
|
101 |
+
if (df.iloc[index - i]["person_scene"] != "Scene") & (index - i >= 0):
|
102 |
+
context.append(df.iloc[index - i]["dialogue"])
|
103 |
+
else:
|
104 |
+
break
|
105 |
+
new_row = {
|
106 |
+
"answer": row["dialogue"],
|
107 |
+
"question": df.iloc[index - 1]["dialogue"],
|
108 |
+
"context": context,
|
109 |
+
}
|
110 |
+
|
111 |
+
scripts = pd.concat([scripts, pd.DataFrame([new_row])])
|
112 |
+
|
113 |
+
elif (row["person_scene"] == character) & (
|
114 |
+
df.iloc[index - 1]["person_scene"] == "Scene"
|
115 |
+
):
|
116 |
+
context = []
|
117 |
+
new_row = {"answer": row["dialogue"], "question": "", "context": context}
|
118 |
+
scripts = pd.concat([scripts, pd.DataFrame([new_row])])
|
119 |
+
# load reworked data to pkl
|
120 |
+
scripts = scripts[scripts["question"] != ""]
|
121 |
+
scripts = scripts.reset_index(drop=True)
|
122 |
+
scripts.to_pickle("data/scripts.pkl")
|
123 |
+
|
124 |
+
|
125 |
+
# ===================================================
|
126 |
+
def encode(texts, model, contexts=None, do_norm=True):
|
127 |
+
"""function to encode texts for cosine similarity search"""
|
128 |
+
|
129 |
+
question_vectors = model.encode(texts)
|
130 |
+
if type(contexts) is list:
|
131 |
+
context_vectors = model.encode("".join(contexts))
|
132 |
+
else:
|
133 |
+
context_vectors = model.encode(contexts)
|
134 |
+
|
135 |
+
return np.concatenate(
|
136 |
+
[
|
137 |
+
np.asarray(context_vectors),
|
138 |
+
np.asarray(question_vectors),
|
139 |
+
],
|
140 |
+
axis=-1,
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
def encode_rag(texts, model, contexts=None, do_norm=True):
|
145 |
+
"""function to encode texts for cosine similarity search"""
|
146 |
+
|
147 |
+
question_vectors = model.encode(texts)
|
148 |
+
context_vectors = model.encode("".join(contexts))
|
149 |
+
|
150 |
+
return np.concatenate(
|
151 |
+
[
|
152 |
+
np.asarray(context_vectors),
|
153 |
+
np.asarray(question_vectors),
|
154 |
+
],
|
155 |
+
axis=-1,
|
156 |
+
)
|
157 |
+
|
158 |
+
|
159 |
+
# ===================================================
|
160 |
+
def encode_df_save(model):
|
161 |
+
"""FOR RAG RETRIEVAL DATABASE
|
162 |
+
this functions vectorizes reworked scripts and loads them to
|
163 |
+
pickle file to be used as retrieval base for ranking script"""
|
164 |
+
|
165 |
+
scripts_reopened = pd.read_pickle("data/scripts.pkl")
|
166 |
+
vect_data = []
|
167 |
+
for index, row in scripts_reopened.iterrows():
|
168 |
+
if type(row["context"]) is list:
|
169 |
+
vect = encode(
|
170 |
+
texts=row["question"],
|
171 |
+
model=model,
|
172 |
+
contexts="".join(row["context"]),
|
173 |
+
)
|
174 |
+
vect_data.append(vect)
|
175 |
+
else:
|
176 |
+
vect = encode(
|
177 |
+
texts=row["question"],
|
178 |
+
model=model,
|
179 |
+
contexts=row["context"],
|
180 |
+
)
|
181 |
+
vect_data.append(vect)
|
182 |
+
with open("data/scripts_vectors.pkl", "wb") as f:
|
183 |
+
pickle.dump(vect_data, f)
|
184 |
+
|
185 |
+
|
186 |
+
# ===================================================
|
187 |
+
def cosine_sim(answer_true_vectros, answer_generated_vectors) -> list:
|
188 |
+
"""FOR MODEL EVALUATION!!!!
|
189 |
+
returns list of tuples with similarity score"""
|
190 |
+
|
191 |
+
data_emb = sparse.csr_matrix(answer_true_vectros)
|
192 |
+
query_emb = sparse.csr_matrix(answer_generated_vectors)
|
193 |
+
similarity = cosine_similarity(query_emb, data_emb).flatten()
|
194 |
+
return similarity[0]
|
195 |
+
|
196 |
+
|
197 |
+
# ===================================================
|
198 |
+
def cosine_sim_rag(data_vectors, query_vectors) -> list:
|
199 |
+
"""FOR RAG RETRIEVAL RANKS!!!
|
200 |
+
returns list of tuples with similarity score and
|
201 |
+
script index in initial dataframe"""
|
202 |
+
|
203 |
+
data_emb = sparse.csr_matrix(data_vectors)
|
204 |
+
query_emb = sparse.csr_matrix(query_vectors)
|
205 |
+
similarity = cosine_similarity(query_emb, data_emb).flatten()
|
206 |
+
ind = np.argwhere(similarity)
|
207 |
+
match = sorted(zip(similarity, ind.tolist()), reverse=True)
|
208 |
+
|
209 |
+
return match
|
210 |
+
|
211 |
+
|
212 |
+
# ===================================================
|
213 |
+
def generate_response(
|
214 |
+
model,
|
215 |
+
tokenizer,
|
216 |
+
question,
|
217 |
+
context,
|
218 |
+
top_p,
|
219 |
+
temperature,
|
220 |
+
rag_answer="",
|
221 |
+
):
|
222 |
+
|
223 |
+
combined = (
|
224 |
+
"context:" + rag_answer +
|
225 |
+
"".join(context) + "</s>" +
|
226 |
+
"question: " + question
|
227 |
+
)
|
228 |
+
input_ids = tokenizer.encode(combined, return_tensors="pt")
|
229 |
+
sample_output = model.generate(
|
230 |
+
input_ids,
|
231 |
+
do_sample=True,
|
232 |
+
max_length=1000,
|
233 |
+
top_p=top_p,
|
234 |
+
temperature=temperature,
|
235 |
+
repetition_penalty=2.0,
|
236 |
+
top_k=50,
|
237 |
+
no_repeat_ngram_size=4,
|
238 |
+
# early_stopping=True,
|
239 |
+
# min_length=10,
|
240 |
+
)
|
241 |
+
|
242 |
+
out = tokenizer.decode(sample_output[0][1:], skip_special_tokens=True)
|
243 |
+
if "</s>" in out:
|
244 |
+
out = out[: out.find("</s>")].strip()
|
245 |
+
|
246 |
+
return out
|
247 |
+
|
248 |
+
|
249 |
+
# ===================================================
|
250 |
+
def top_candidates(score_lst_sorted, initial_data, top=1):
|
251 |
+
"""this functions receives results of the cousine similarity ranking and
|
252 |
+
returns top items' scores and their indices"""
|
253 |
+
|
254 |
+
scores = [item[0] for item in score_lst_sorted]
|
255 |
+
candidates_indexes = [item[1][0] for item in score_lst_sorted]
|
256 |
+
return scores[0:top], candidates_indexes[0:top]
|