Spaces:
Sleeping
Sleeping
Shakshi3104
commited on
Commit
·
2cca64b
1
Parent(s):
83ce2de
[add] Implement surface search
Browse files- .gitignore +1 -0
- model/search/bm25.py +146 -0
- model/utils/tokenizer.py +63 -0
.gitignore
CHANGED
@@ -5,6 +5,7 @@
|
|
5 |
# Develop
|
6 |
.venv/
|
7 |
logs/
|
|
|
8 |
|
9 |
# Default
|
10 |
# Byte-compiled / optimized / DLL files
|
|
|
5 |
# Develop
|
6 |
.venv/
|
7 |
logs/
|
8 |
+
data/
|
9 |
|
10 |
# Default
|
11 |
# Byte-compiled / optimized / DLL files
|
model/search/bm25.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
from typing import List, Union
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from loguru import logger
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
from rank_bm25 import BM25Okapi
|
11 |
+
|
12 |
+
from model.search.base import BaseSearchClient
|
13 |
+
from model.utils.tokenizer import MeCabTokenizer
|
14 |
+
|
15 |
+
|
16 |
+
class BM25Wrapper(BM25Okapi):
|
17 |
+
def __init__(self, dataset: pd.DataFrame, target, tokenizer=None, k1=1.5, b=0.75, epsilon=0.25):
|
18 |
+
self.k1 = k1
|
19 |
+
self.b = b
|
20 |
+
self.epsilon = epsilon
|
21 |
+
self.dataset = dataset
|
22 |
+
corpus = dataset[target].values.tolist()
|
23 |
+
super().__init__(corpus, tokenizer)
|
24 |
+
|
25 |
+
def get_top_n(self, query, documents, n=5):
|
26 |
+
assert self.corpus_size == len(documents), "The documents given don't match the index corpus!"
|
27 |
+
|
28 |
+
scores = self.get_scores(query)
|
29 |
+
top_n = np.argsort(scores)[::-1][:n]
|
30 |
+
|
31 |
+
result = deepcopy(self.dataset.iloc[top_n])
|
32 |
+
result["score"] = scores[top_n]
|
33 |
+
return result
|
34 |
+
|
35 |
+
|
36 |
+
class BM25SearchClient(BaseSearchClient):
|
37 |
+
def __init__(self, _model: BM25Okapi, _corpus: List[List[str]]):
|
38 |
+
"""
|
39 |
+
|
40 |
+
Parameters
|
41 |
+
----------
|
42 |
+
_model:
|
43 |
+
BM25Okapi
|
44 |
+
_corpus:
|
45 |
+
List[List[str]], 検索対象の分かち書き後のフィールド
|
46 |
+
"""
|
47 |
+
self.model = _model
|
48 |
+
self.corpus = _corpus
|
49 |
+
|
50 |
+
@staticmethod
|
51 |
+
def tokenize_ja(_text: List[str]):
|
52 |
+
"""MeCab日本語分かち書きによるコーパス作成
|
53 |
+
|
54 |
+
Args:
|
55 |
+
_text (List[str]): コーパス文のリスト
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
List[List[str]]: 分かち書きされたテキストのリスト
|
59 |
+
"""
|
60 |
+
|
61 |
+
# MeCabで分かち書き
|
62 |
+
parser = MeCabTokenizer.from_tagger("-Owakati")
|
63 |
+
|
64 |
+
corpus = []
|
65 |
+
with tqdm(_text) as pbar:
|
66 |
+
for i, t in enumerate(pbar):
|
67 |
+
try:
|
68 |
+
# 分かち書きをする
|
69 |
+
corpus.append(parser.parse(t).split())
|
70 |
+
except TypeError as e:
|
71 |
+
if not isinstance(t, str):
|
72 |
+
logger.info(f"🚦 [BM25SearchClient] Corpus index of {i} is not instance of String.")
|
73 |
+
corpus.append(["[UNKNOWN]"])
|
74 |
+
else:
|
75 |
+
raise e
|
76 |
+
return corpus
|
77 |
+
|
78 |
+
@classmethod
|
79 |
+
def from_dataframe(cls, _data: pd.DataFrame, _target: str):
|
80 |
+
"""
|
81 |
+
検索ドキュメントのpd.DataFrameから初期化する
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
_data:
|
86 |
+
pd.DataFrame, 検索対象のDataFrame
|
87 |
+
|
88 |
+
_target:
|
89 |
+
str, 検索対象のカラム名
|
90 |
+
|
91 |
+
Returns
|
92 |
+
-------
|
93 |
+
|
94 |
+
"""
|
95 |
+
|
96 |
+
logger.info("🚦 [BM25SearchClient] Initialize from DataFrame")
|
97 |
+
|
98 |
+
search_field = _data[_target]
|
99 |
+
corpus = search_field.values.tolist()
|
100 |
+
|
101 |
+
# 分かち書きをする
|
102 |
+
corpus_tokenized = cls.tokenize_ja(corpus)
|
103 |
+
_data["tokenized"] = corpus_tokenized
|
104 |
+
|
105 |
+
bm25 = BM25Wrapper(_data, "tokenized")
|
106 |
+
return cls(bm25, corpus_tokenized)
|
107 |
+
|
108 |
+
def search_top_n(self, _query: Union[List[str], str], n: int = 10) -> List[pd.DataFrame]:
|
109 |
+
"""
|
110 |
+
クエリに対する検索結果をtop-n個取得する
|
111 |
+
|
112 |
+
Parameters
|
113 |
+
----------
|
114 |
+
_query:
|
115 |
+
Union[List[str], str], 検索クエリ
|
116 |
+
n:
|
117 |
+
int, top-nの個数. デフォルト 10.
|
118 |
+
|
119 |
+
Returns
|
120 |
+
-------
|
121 |
+
results:
|
122 |
+
List[pd.DataFrame], ランキング結果
|
123 |
+
"""
|
124 |
+
|
125 |
+
logger.info(f"🚦 [BM25SearchClient] Search top {n} | {_query}")
|
126 |
+
|
127 |
+
# 型チェック
|
128 |
+
if isinstance(_query, str):
|
129 |
+
_query = [_query]
|
130 |
+
|
131 |
+
# クエリを分かち書き
|
132 |
+
query_tokens = self.tokenize_ja(_query)
|
133 |
+
|
134 |
+
# ランキングtop-nをクエリ毎に取得
|
135 |
+
result = []
|
136 |
+
for query in tqdm(query_tokens):
|
137 |
+
query_text = "".join(query)
|
138 |
+
df_res = self.model.get_top_n(query, self.corpus, n)
|
139 |
+
df_res["query"] = [query_text] * len(df_res)
|
140 |
+
df_res["rank"] = deepcopy(df_res.reset_index()).index
|
141 |
+
df_res = df_res.drop(columns=["tokenized"])
|
142 |
+
result.append(df_res)
|
143 |
+
|
144 |
+
logger.success(f"🚦 [BM25SearchClient] Executed")
|
145 |
+
|
146 |
+
return result
|
model/utils/tokenizer.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import MeCab
|
5 |
+
# from janome.tokenizer import Tokenizer
|
6 |
+
|
7 |
+
|
8 |
+
class BaseTokenizer:
|
9 |
+
@abc.abstractmethod
|
10 |
+
def parse(self, _text: str) -> str:
|
11 |
+
"""
|
12 |
+
分かち書きした結果を返す
|
13 |
+
|
14 |
+
Parameters
|
15 |
+
----------
|
16 |
+
_text:
|
17 |
+
str, 入力文章
|
18 |
+
|
19 |
+
Returns
|
20 |
+
-------
|
21 |
+
parsed:
|
22 |
+
str, 分かち書き後の文章, スペース区切り
|
23 |
+
"""
|
24 |
+
raise NotImplementedError
|
25 |
+
|
26 |
+
|
27 |
+
class MeCabTokenizer(BaseTokenizer):
|
28 |
+
def __init__(self, _parser: MeCab.Tagger) -> None:
|
29 |
+
self.parser = _parser
|
30 |
+
|
31 |
+
@classmethod
|
32 |
+
def from_tagger(cls, _tagger: Optional[str]):
|
33 |
+
parser = MeCab.Tagger(_tagger)
|
34 |
+
return cls(parser)
|
35 |
+
|
36 |
+
def parse(self, _text: str):
|
37 |
+
return self.parser.parse(_text)
|
38 |
+
|
39 |
+
|
40 |
+
# class JanomeTokenizer(BaseTokenizer):
|
41 |
+
# def __init__(self, _tokenizer: Tokenizer):
|
42 |
+
# self.tokenizer = _tokenizer
|
43 |
+
#
|
44 |
+
# @classmethod
|
45 |
+
# def from_user_simple_dictionary(cls, _dict_filepath: Optional[str] = None):
|
46 |
+
# """
|
47 |
+
# 簡易辞書フォーマットによるユーザー辞書によるイニシャライザー
|
48 |
+
#
|
49 |
+
# https://mocobeta.github.io/janome/#v0-2-7
|
50 |
+
#
|
51 |
+
# Parameters
|
52 |
+
# ----------
|
53 |
+
# _dict_filepath:
|
54 |
+
# str, 簡易辞書フォーマットで書かれたユーザー辞書 (CSVファイル)のファイルパス
|
55 |
+
# """
|
56 |
+
#
|
57 |
+
# if _dict_filepath is None:
|
58 |
+
# return cls(Tokenizer())
|
59 |
+
# else:
|
60 |
+
# return cls(Tokenizer(udic=_dict_filepath, udic_type='simpledic'))
|
61 |
+
#
|
62 |
+
# def parse(self, _text: str) -> str:
|
63 |
+
# return " ".join(list(self.tokenizer.tokenize(_text, wakati=True)))
|