|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
|
|
from transformers import SeamlessM4Tv2Model, AutoProcessor |
|
from lang_list import ( |
|
ASR_TARGET_LANGUAGE_NAMES, |
|
LANGUAGE_NAME_TO_CODE, |
|
S2ST_TARGET_LANGUAGE_NAMES, |
|
S2TT_TARGET_LANGUAGE_NAMES, |
|
T2ST_TARGET_LANGUAGE_NAMES, |
|
T2TT_TARGET_LANGUAGE_NAMES, |
|
TEXT_SOURCE_LANGUAGE_NAMES, |
|
) |
|
|
|
processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large") |
|
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") |
|
|
|
AUDIO_SAMPLE_RATE = 16000.0 |
|
MAX_INPUT_AUDIO_LENGTH = 60 |
|
DEFAULT_TARGET_LANGUAGE = "French" |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda:0") |
|
dtype = torch.float16 |
|
else: |
|
device = torch.device("cpu") |
|
dtype = torch.float32 |
|
|
|
def preprocess_audio(input_audio: str) -> None: |
|
arr, org_sr = torchaudio.load(input_audio) |
|
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE) |
|
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE) |
|
if new_arr.shape[1] > max_length: |
|
new_arr = new_arr[:, :max_length] |
|
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.") |
|
torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE)) |
|
|
|
|
|
def run_s2st( |
|
input_audio: str, source_language: str, target_language: str |
|
) -> tuple[tuple[int, np.ndarray] | None, str]: |
|
preprocess_audio(input_audio) |
|
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] |
|
target_language_code = LANGUAGE_NAME_TO_CODE[target_language] |
|
arr, org_sr = torchaudio.load(input_audio) |
|
audio_inputs = processor(audios=arr, return_tensors="pt", |
|
sampling_rate=model.config.sampling_rate).to(device) |
|
output = model.generate(**audio_inputs, return_intermediate_token_ids=True, |
|
tgt_lang=target_language_code,) |
|
|
|
audio_array_from_audio = output[0].cpu().numpy().squeeze() |
|
text_tokens = output[2] |
|
translated_text_from_text = processor.decode(text_tokens.tolist()[0], skip_special_tokens=True) |
|
return (int(AUDIO_SAMPLE_RATE), audio_array_from_audio), translated_text_from_text |
|
|
|
description = """ |
|
# Direct Speech to Speech Translation |
|
|
|
This demo uses SeamlessM4T V2 to translate one speech directly into another. |
|
The model being used here is [facebook/seamless-m4t-v2-large](https://huggingface.co/facebook/seamless-m4t-v2-large). |
|
|
|
SeamlessM4T V2 is unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST) translation and more, without relying on multiple separate models. |
|
""" |
|
|
|
with gr.Blocks() as demo_s2st: |
|
gr.Markdown(description) |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Group(): |
|
input_audio = gr.Audio(label="Input speech", type="filepath") |
|
source_language = gr.Dropdown( |
|
label="Source language", |
|
choices=ASR_TARGET_LANGUAGE_NAMES, |
|
value="English", |
|
) |
|
target_language = gr.Dropdown( |
|
label="Target language", |
|
choices=S2ST_TARGET_LANGUAGE_NAMES, |
|
value=DEFAULT_TARGET_LANGUAGE, |
|
) |
|
btn = gr.Button("Translate") |
|
with gr.Column(): |
|
with gr.Group(): |
|
output_audio = gr.Audio( |
|
label="Translated speech", |
|
autoplay=False, |
|
streaming=False, |
|
type="numpy", |
|
) |
|
output_text = gr.Textbox(label="Translated text") |
|
|
|
gr.Examples( |
|
examples=[ |
|
["assets/sample_input.mp3", "English", "French"], |
|
["assets/sample_input.mp3", "English", "Mandarin Chinese"], |
|
["assets/sample_input_2.mp3", "English", "Hindi"], |
|
["assets/sample_input_2.mp3", "English", "Spanish"], |
|
], |
|
inputs=[input_audio, source_language, target_language], |
|
outputs=[output_audio, output_text], |
|
fn=run_s2st, |
|
cache_examples=True, |
|
) |
|
|
|
btn.click( |
|
fn=run_s2st, |
|
inputs=[input_audio, source_language, target_language], |
|
outputs=[output_audio, output_text], |
|
) |
|
|
|
demo_s2st.launch() |