Shamima commited on
Commit
e9097df
1 Parent(s): 6f29065

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """code-search.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1-TlihNx5XCiVSxUHDF1oHFNcfpuy_k0N
8
+ """
9
+
10
+ # Install Cohere for embeddings
11
+
12
+ import cohere
13
+ import numpy as np
14
+ import pandas as pd
15
+ import gradio as gr
16
+
17
+ from sklearn.metrics.pairwise import cosine_similarity
18
+ from annoy import AnnoyIndex
19
+ import warnings
20
+ warnings.filterwarnings('ignore')
21
+ pd.set_option('display.max_colwidth', None)
22
+
23
+ data_df = pd.read_csv('functions_data.csv')
24
+ #data_df.head()
25
+
26
+ data_df['docstring'].fillna('not specified', inplace=True)
27
+
28
+ # Paste your API key here. Remember to not share publicly
29
+ api_key = '2IdvZuDAwqcpMuwN3yjAXBOHKAT1Mqxr4N8hZFKN'
30
+
31
+ # Create and retrieve a Cohere API key from dashboard.cohere.ai/welcome/register
32
+ co = cohere.Client(api_key)
33
+
34
+
35
+ search_index = AnnoyIndex(4096, 'angular')
36
+ search_index.load('code.ann') # super fast, will just mmap the file
37
+
38
+ def get_code(query):
39
+ # Get the query's embedding
40
+ query_embed = co.embed(texts=[query],
41
+ model="large",
42
+ truncate="LEFT").embeddings
43
+
44
+ # Retrieve the nearest neighbors
45
+ similar_item_ids = search_index.get_nns_by_vector(query_embed[0],3,
46
+ include_distances=True)
47
+
48
+ return data_df.iloc[similar_item_ids[0]]['function_body'] , data_df.iloc[similar_item_ids[0]]['file_path']
49
+
50
+ iface = gr.Interface(fn=get_code, inputs="text", outputs=[gr.Markdown(), "text"])
51
+ iface.launch()
52
+
53
+
54
+