import streamlit as st from diffusers import DiffusionPipeline import base64 import io # Load the pre-trained model pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-512x512", use_safetensors=True) # Create a Streamlit interface st.title("Image Generation Model") st.write("Enter a prompt for the image generation model:") # Generate the image prompt = st.text_input("Prompt", label_visibility="collapsed") if st.button("Generate Image"): with st.spinner("Generating image..."): # Generate the image image = pipeline(prompt, num_inference_steps=20).images[0] # Convert the image to bytes buf = io.BytesIO() image.save(buf, format='JPEG') img_bytes = buf.getvalue() # Display the generated image st.write("Generated image:") st.image(img_bytes, caption="Generated image", use_column_width=True)