import os import gradio as gr import torch import PIL from flamingo_mini import FlamingoConfig, FlamingoModel, FlamingoProcessor EXAMPLES_DIR = 'examples' DEFAULT_PROMPT = "" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = FlamingoModel.from_pretrained('dhansmair/flamingo-mini') model.to(device) model.eval() processor = FlamingoProcessor(model.config, load_vision_processor=True) # setup some example images examples = [] if os.path.isdir(EXAMPLES_DIR): for file in os.listdir(EXAMPLES_DIR): path = EXAMPLES_DIR + "/" + file examples.append([path, DEFAULT_PROMPT]) def predict_caption(image, prompt): assert isinstance(prompt, str) features = processor.extract_features(image).to(device) caption = model.generate_captions(processor, visual_features=features, prompt=prompt) if isinstance(caption, list): caption = caption[0] return caption iface = gr.Interface(fn=predict_caption, inputs=[gr.Image(type="pil"), gr.Textbox(value=DEFAULT_PROMPT, label="Prompt")], examples=examples, outputs="text") iface.launch()