Spaces:
Sleeping
Sleeping
import streamlit as st | |
#from google.cloud import aiplatform | |
from transformers import pipeline | |
from google.cloud import aiplatform | |
import os | |
import logging | |
import whisper | |
from gtts import gTTS | |
import tempfile | |
from pydub import AudioSegment | |
from groq import Groq, GroqError | |
# Set up Google Cloud credentials | |
def setup_google_cloud_credentials(): | |
google_credentials_path = "/path/to/your-service-account-file.json" | |
if os.path.exists(google_credentials_path): | |
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = google_credentials_path | |
logging.info(f"Google Cloud credentials set from {google_credentials_path}") | |
else: | |
raise FileNotFoundError(f"Google Cloud credentials file not found at {google_credentials_path}") | |
# Initialize the client | |
def init_palm(api_key): | |
aiplatform.init(api_key=api_key) | |
# Function to generate responses | |
def generate_palm_response(prompt): | |
response = aiplatform.Model.predict( | |
model_name="gemini-1.5-flash", | |
instances=[{"prompt": prompt}] | |
) | |
return response.predictions[0]['content'] | |
# Main code to run the application | |
if __name__ == "__main__": | |
try: | |
# Set up Google Cloud credentials | |
setup_google_cloud_credentials() | |
# Call the model | |
api_key = "AIzaSyD-49IyRzS6Ok_zymcEdv1QADw0rWQJFI4" | |
init_palm(api_key) | |
response = generate_palm_response("Heart health query...") | |
print(response) | |
# Streamlit app or other logic goes here... | |
except Exception as e: | |
logging.error(f"Error occurred: {e}") | |