|
import streamlit as st |
|
import google.generativeai as genai |
|
from PIL import Image |
|
import PyPDF2 |
|
import tempfile |
|
import os |
|
from google.api_core import exceptions |
|
from dotenv import load_dotenv |
|
import time |
|
from gtts import gTTS |
|
import base64 |
|
|
|
load_dotenv() |
|
|
|
|
|
api_key = os.getenv("GEMINI_API_KEY") |
|
if not api_key: |
|
st.error("Gemini API key not found. Please set the GEMINI_API_KEY environment variable.") |
|
st.stop() |
|
|
|
|
|
genai.configure(api_key=api_key) |
|
model = genai.GenerativeModel('gemini-1.5-flash') |
|
|
|
MAX_RETRIES = 3 |
|
RETRY_DELAY = 2 |
|
|
|
|
|
LANGUAGES = { |
|
"English": "en", |
|
"Spanish": "es", |
|
"French": "fr", |
|
"German": "de", |
|
"Italian": "it", |
|
"Portuguese": "pt", |
|
"Urdu": "ur", |
|
"Chinese (Simplified)": "zh-cn" |
|
} |
|
|
|
def analyze_medical_report(content, content_type, lang): |
|
prompt = "Analyze this medical report concisely. Provide key findings, diagnoses, and recommendations:" |
|
|
|
|
|
if lang != "en": |
|
translations = { |
|
"es": "Analiza este informe médico de manera concisa. Proporcione hallazgos clave, diagnósticos y recomendaciones:", |
|
"fr": "Analysez ce rapport médical de manière concise. Fournissez les résultats clés, les diagnostics et les recommandations :", |
|
"de": "Analysieren Sie diesen medizinischen Bericht kurz und prägnant. Geben Sie wichtige Ergebnisse, Diagnosen und Empfehlungen an:", |
|
"it": "Analizza questo rapporto medico in modo conciso. Fornisci risultati chiave, diagnosi e raccomandazioni:", |
|
"pt": "Analise este relatório médico de forma concisa. Forneça os principais resultados, diagnósticos e recomendações:", |
|
"ur": "اس طبی رپورٹ کا مختصر تجزیہ کریں۔ اہم نتائج، تشخیصات، اور سفارشات فراہم کریں:", |
|
"zh-cn": "简明分析此医疗报告。提供关键发现、诊断和建议:" |
|
} |
|
prompt = translations.get(lang, prompt) |
|
|
|
for attempt in range(MAX_RETRIES): |
|
try: |
|
if content_type == "image": |
|
response = model.generate_content([prompt, content]) |
|
else: |
|
response = model.generate_content(f"{prompt}\n\n{content}") |
|
|
|
return response.text |
|
except exceptions.GoogleAPIError as e: |
|
if attempt < MAX_RETRIES - 1: |
|
st.warning(f"An error occurred. Retrying in {RETRY_DELAY} seconds... (Attempt {attempt + 1}/{MAX_RETRIES})") |
|
time.sleep(RETRY_DELAY) |
|
else: |
|
st.error(f"Failed to analyze the report after {MAX_RETRIES} attempts. Error: {str(e)}") |
|
return fallback_analysis(content, content_type) |
|
|
|
def generate_tts_audio(text, lang_code): |
|
|
|
tts = gTTS(text=text, lang=lang_code) |
|
|
|
|
|
audio_path = "audio_output.mp3" |
|
tts.save(audio_path) |
|
|
|
return audio_path |
|
|
|
def audio_player(audio_path): |
|
|
|
audio_file = open(audio_path, "rb") |
|
audio_bytes = audio_file.read() |
|
st.audio(audio_bytes, format="audio/mp3") |
|
|
|
def extract_text_from_pdf(pdf_file): |
|
|
|
pdf_reader = PyPDF2.PdfReader(pdf_file) |
|
|
|
|
|
text = "" |
|
for page_num in range(len(pdf_reader.pages)): |
|
page = pdf_reader.pages[page_num] |
|
text += page.extract_text() |
|
|
|
return text |
|
|
|
def main(): |
|
st.title("ReportEase AI") |
|
st.write("AI-driven Medical Report Analyzer with Multilingual Audio Feedback.") |
|
|
|
st.write("Upload a Medical report (Image or PDF) for analysis.") |
|
|
|
language = st.selectbox("Select language for analysis and audio feedback:", list(LANGUAGES.keys())) |
|
lang_code = LANGUAGES[language] |
|
|
|
file_type = st.radio("Select file type:", ("Image", "PDF")) |
|
|
|
if file_type == "Image": |
|
uploaded_file = st.file_uploader("Choose a medical report image", type=["jpg", "jpeg", "png"]) |
|
if uploaded_file is not None: |
|
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file: |
|
tmp_file.write(uploaded_file.getvalue()) |
|
tmp_file_path = tmp_file.name |
|
|
|
image = Image.open(tmp_file_path) |
|
st.image(image, caption="Uploaded Medical Report", use_column_width=True) |
|
|
|
if st.button("Analyze Image Report"): |
|
with st.spinner("Analyzing the medical report image..."): |
|
analysis = analyze_medical_report(image, "image", lang_code) |
|
st.subheader("Analysis Results:") |
|
st.write(analysis) |
|
|
|
|
|
audio_path = generate_tts_audio(analysis, lang_code) |
|
st.write("Listen to the analysis:") |
|
audio_player(audio_path) |
|
|
|
os.unlink(tmp_file_path) |
|
|
|
else: |
|
uploaded_file = st.file_uploader("Choose a medical report PDF", type=["pdf"]) |
|
if uploaded_file is not None: |
|
st.write("PDF uploaded successfully") |
|
|
|
if st.button("Analyze PDF Report"): |
|
with st.spinner("Analyzing the medical report PDF..."): |
|
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file: |
|
tmp_file.write(uploaded_file.getvalue()) |
|
tmp_file_path = tmp_file.name |
|
|
|
with open(tmp_file_path, 'rb') as pdf_file: |
|
pdf_text = extract_text_from_pdf(pdf_file) |
|
|
|
analysis = analyze_medical_report(pdf_text, "text", lang_code) |
|
st.subheader("Analysis Results:") |
|
st.write(analysis) |
|
|
|
|
|
audio_path = generate_tts_audio(analysis, lang_code) |
|
st.write("Listen to the analysis:") |
|
audio_player(audio_path) |
|
|
|
os.unlink(tmp_file_path) |
|
|
|
|
|
st.markdown("---") |
|
st.markdown("<p style='text-align: center;'>😎 Made by Shan-Ul-Haq 😎</p>", unsafe_allow_html=True) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|