Shanulhaq commited on
Commit
6f9e4d0
1 Parent(s): 8dab9d2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +227 -0
app.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import google.generativeai as genai
3
+ from PIL import Image
4
+ import PyPDF2
5
+ import tempfile
6
+ import os
7
+ from dotenv import load_dotenv
8
+ import time
9
+ from gtts import gTTS
10
+ import base64
11
+ import requests # Added for Hugging Face API requests
12
+ from google.api_core import exceptions
13
+
14
+ load_dotenv()
15
+
16
+ # Configure the Gemini AI model for text analysis
17
+ gemini_api_key = os.getenv("GEMINI_API_KEY")
18
+ if not gemini_api_key:
19
+ st.error("Gemini API key not found. Please set the GEMINI_API_KEY environment variable.")
20
+ st.stop()
21
+
22
+ genai.configure(api_key=gemini_api_key)
23
+ gemini_model = genai.GenerativeModel('gemini-1.5-flash')
24
+
25
+ # Configure the Hugging Face model for image analysis
26
+ huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
27
+ if not huggingface_api_key:
28
+ st.error("Hugging Face API key not found. Please set the HUGGINGFACE_API_KEY environment variable.")
29
+ st.stop()
30
+
31
+ HUGGINGFACE_API_URL = os.getenv("HUGGINGFACE_API_URL")
32
+ if not HUGGINGFACE_API_URL:
33
+ st.error("Hugging Face API URL not found. Please set the HUGGINGFACE_API_URL environment variable.")
34
+ st.stop()
35
+
36
+ MAX_RETRIES = 3
37
+ RETRY_DELAY = 2 # seconds
38
+
39
+ # Dictionary for language support (including Urdu)
40
+ LANGUAGES = {
41
+ "English": "en",
42
+ "Spanish": "es",
43
+ "French": "fr",
44
+ "German": "de",
45
+ "Italian": "it",
46
+ "Portuguese": "pt",
47
+ "Urdu": "ur"
48
+ }
49
+
50
+ def analyze_text_report(content, lang):
51
+ prompt = "Analyze this medical report concisely. Provide key findings, diagnoses, and recommendations:"
52
+
53
+ # Adjust prompt language if not English
54
+ if lang != "en":
55
+ translations = {
56
+ "es": "Analiza este informe médico de manera concisa. Proporcione hallazgos clave, diagnósticos y recomendaciones:",
57
+ "fr": "Analysez ce rapport médical de manière concise. Fournissez les résultats clés, les diagnostics et les recommandations :",
58
+ "de": "Analysieren Sie diesen medizinischen Bericht kurz und prägnant. Geben Sie wichtige Ergebnisse, Diagnosen und Empfehlungen an:",
59
+ "it": "Analizza questo rapporto medico in modo conciso. Fornisci risultati chiave, diagnosi e raccomandazioni:",
60
+ "pt": "Analise este relatório médico de forma concisa. Forneça os principais resultados, diagnósticos e recomendações:",
61
+ "ur": "اس طبی رپورٹ کا مختصر تجزیہ کریں۔ اہم نتائج، تشخیصات، اور سفارشات فراہم کریں:"
62
+ }
63
+ prompt = translations.get(lang, prompt)
64
+
65
+ for attempt in range(MAX_RETRIES):
66
+ try:
67
+ response = gemini_model.generate_content(f"{prompt}\n\n{content}")
68
+ return response.text
69
+ except exceptions.GoogleAPIError as e:
70
+ if attempt < MAX_RETRIES - 1:
71
+ st.warning(f"An error occurred. Retrying in {RETRY_DELAY} seconds... (Attempt {attempt + 1}/{MAX_RETRIES})")
72
+ time.sleep(RETRY_DELAY)
73
+ else:
74
+ st.error(f"Failed to analyze the report after {MAX_RETRIES} attempts. Error: {str(e)}")
75
+ return fallback_analysis(content, "text")
76
+
77
+ def analyze_image_report(image_path, lang):
78
+ headers = {
79
+ "Authorization": f"Bearer {huggingface_api_key}",
80
+ "Content-Type": "application/octet-stream"
81
+ }
82
+
83
+ for attempt in range(MAX_RETRIES):
84
+ try:
85
+ with open(image_path, "rb") as img_file:
86
+ image_data = img_file.read()
87
+ response = requests.post(HUGGINGFACE_API_URL, headers=headers, data=image_data)
88
+
89
+ if response.status_code == 200:
90
+ result = response.json()
91
+ # Parse the response based on the model's output structure
92
+ analysis = ""
93
+ if isinstance(result, list):
94
+ for condition in result:
95
+ label = condition.get('label', 'Unknown')
96
+ score = condition.get('score', 0)
97
+ analysis += f"{label}: {score:.2f}\n"
98
+ elif isinstance(result, dict):
99
+ for key, value in result.items():
100
+ analysis += f"{key}: {value:.2f}\n"
101
+ else:
102
+ st.warning("Unexpected response format from Hugging Face API.")
103
+ return fallback_analysis(None, "image")
104
+ return analysis
105
+ elif response.status_code == 503:
106
+ # Model is loading
107
+ st.warning("Model is loading. Waiting for 30 seconds before retrying...")
108
+ time.sleep(30)
109
+ continue
110
+ else:
111
+ st.warning(f"Hugging Face API returned status code {response.status_code}: {response.text}")
112
+ if attempt < MAX_RETRIES - 1:
113
+ st.warning(f"Retrying in {RETRY_DELAY} seconds... (Attempt {attempt + 1}/{MAX_RETRIES})")
114
+ time.sleep(RETRY_DELAY)
115
+ else:
116
+ st.error(f"Failed to analyze the image after {MAX_RETRIES} attempts.")
117
+ return fallback_analysis(None, "image")
118
+ except Exception as e:
119
+ if attempt < MAX_RETRIES - 1:
120
+ st.warning(f"An error occurred: {str(e)}. Retrying in {RETRY_DELAY} seconds... (Attempt {attempt + 1}/{MAX_RETRIES})")
121
+ time.sleep(RETRY_DELAY)
122
+ else:
123
+ st.error(f"Failed to analyze the image after {MAX_RETRIES} attempts. Error: {str(e)}")
124
+ return fallback_analysis(None, "image")
125
+
126
+ def fallback_analysis(content, content_type):
127
+ st.warning("Using fallback analysis method due to API issues.")
128
+ if content_type == "image":
129
+ return "Unable to analyze the image due to API issues. Please try again later or consult a medical professional for accurate interpretation."
130
+ else: # text
131
+ word_count = len(content.split()) if content else 0
132
+ return f"""
133
+ **Fallback Analysis:**
134
+ 1. **Document Type:** Text-based medical report
135
+ 2. **Word Count:** Approximately {word_count} words
136
+ 3. **Content:** The document appears to contain medical information, but detailed analysis is unavailable due to technical issues.
137
+ 4. **Recommendation:** Please review the document manually or consult with a healthcare professional for accurate interpretation.
138
+ 5. **Note:** This is a simplified analysis due to temporary unavailability of the AI service. For a comprehensive analysis, please try again later.
139
+ """
140
+
141
+ def extract_text_from_pdf(pdf_file):
142
+ pdf_reader = PyPDF2.PdfReader(pdf_file)
143
+ text = ""
144
+ for page in pdf_reader.pages:
145
+ page_text = page.extract_text()
146
+ if page_text:
147
+ text += page_text
148
+ return text
149
+
150
+ def generate_tts_audio(text, lang_code):
151
+ tts = gTTS(text=text, lang=lang_code)
152
+ with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as tmp_file:
153
+ tts.save(tmp_file.name)
154
+ return tmp_file.name
155
+
156
+ def audio_player(audio_file_path):
157
+ with open(audio_file_path, "rb") as audio_file:
158
+ audio_bytes = audio_file.read()
159
+ b64_audio = base64.b64encode(audio_bytes).decode()
160
+ audio_html = f"""
161
+ <audio controls>
162
+ <source src="data:audio/mp3;base64,{b64_audio}" type="audio/mp3">
163
+ Your browser does not support the audio element.
164
+ </audio>
165
+ """
166
+ st.markdown(audio_html, unsafe_allow_html=True)
167
+
168
+ def main():
169
+ st.title("AI-driven Medical Report Analyzer with Multilingual Audio Feedback")
170
+ st.write("Upload a medical report (image or PDF) for analysis")
171
+
172
+ # Language selection
173
+ language = st.selectbox("Select language for analysis and audio feedback:", list(LANGUAGES.keys()))
174
+ lang_code = LANGUAGES[language]
175
+
176
+ file_type = st.radio("Select file type:", ("Image", "PDF"))
177
+
178
+ if file_type == "Image":
179
+ uploaded_file = st.file_uploader("Choose a medical report image", type=["jpg", "jpeg", "png"])
180
+ if uploaded_file is not None:
181
+ with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file:
182
+ tmp_file.write(uploaded_file.getvalue())
183
+ tmp_file_path = tmp_file.name
184
+
185
+ image = Image.open(tmp_file_path)
186
+ st.image(image, caption="Uploaded Medical Report", use_column_width=True)
187
+
188
+ if st.button("Analyze Image Report"):
189
+ with st.spinner("Analyzing the medical report image..."):
190
+ analysis = analyze_image_report(tmp_file_path, lang_code)
191
+ st.subheader("Analysis Results:")
192
+ st.write(analysis)
193
+
194
+ # Generate and play audio for analysis
195
+ audio_path = generate_tts_audio(analysis, lang_code)
196
+ st.write("Listen to the analysis:")
197
+ audio_player(audio_path)
198
+
199
+ os.unlink(tmp_file_path)
200
+
201
+ else: # PDF
202
+ uploaded_file = st.file_uploader("Choose a medical report PDF", type=["pdf"])
203
+ if uploaded_file is not None:
204
+ st.write("PDF uploaded successfully")
205
+
206
+ if st.button("Analyze PDF Report"):
207
+ with st.spinner("Analyzing the medical report PDF..."):
208
+ with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
209
+ tmp_file.write(uploaded_file.getvalue())
210
+ tmp_file_path = tmp_file.name
211
+
212
+ with open(tmp_file_path, 'rb') as pdf_file:
213
+ pdf_text = extract_text_from_pdf(pdf_file)
214
+
215
+ analysis = analyze_text_report(pdf_text, lang_code)
216
+ st.subheader("Analysis Results:")
217
+ st.write(analysis)
218
+
219
+ # Generate and play audio for analysis
220
+ audio_path = generate_tts_audio(analysis, lang_code)
221
+ st.write("Listen to the analysis:")
222
+ audio_player(audio_path)
223
+
224
+ os.unlink(tmp_file_path)
225
+
226
+ if __name__ == "__main__":
227
+ main()