import streamlit as st import google.generativeai as genai from PIL import Image import PyPDF2 import tempfile import os from google.api_core import exceptions from dotenv import load_dotenv import time from gtts import gTTS import base64 load_dotenv() # Load the API key from the environment variable api_key = os.getenv("GEMINI_API_KEY") if not api_key: st.error("Gemini API key not found. Please set the GEMINI_API_KEY environment variable.") st.stop() # Configure the Gemini API genai.configure(api_key=api_key) model = genai.GenerativeModel('gemini-1.5-flash') # Initialize the model MAX_RETRIES = 3 RETRY_DELAY = 2 # seconds # Add Chinese (Simplified) to language support LANGUAGES = { "English": "en", "Spanish": "es", "French": "fr", "German": "de", "Italian": "it", "Portuguese": "pt", "Urdu": "ur", "Chinese (Simplified)": "zh-cn" } def analyze_medical_report(content, content_type, lang): prompt = "Analyze this medical report concisely. Provide key findings, diagnoses, and recommendations:" # Adjust prompt language if not English if lang != "en": translations = { "es": "Analiza este informe médico de manera concisa. Proporcione hallazgos clave, diagnósticos y recomendaciones:", "fr": "Analysez ce rapport médical de manière concise. Fournissez les résultats clés, les diagnostics et les recommandations :", "de": "Analysieren Sie diesen medizinischen Bericht kurz und prägnant. Geben Sie wichtige Ergebnisse, Diagnosen und Empfehlungen an:", "it": "Analizza questo rapporto medico in modo conciso. Fornisci risultati chiave, diagnosi e raccomandazioni:", "pt": "Analise este relatório médico de forma concisa. Forneça os principais resultados, diagnósticos e recomendações:", "ur": "اس طبی رپورٹ کا مختصر تجزیہ کریں۔ اہم نتائج، تشخیصات، اور سفارشات فراہم کریں:", "zh-cn": "简明分析此医疗报告。提供关键发现、诊断和建议:" } prompt = translations.get(lang, prompt) for attempt in range(MAX_RETRIES): try: if content_type == "image": response = model.generate_content([prompt, content]) else: # text response = model.generate_content(f"{prompt}\n\n{content}") return response.text except exceptions.GoogleAPIError as e: if attempt < MAX_RETRIES - 1: st.warning(f"An error occurred. Retrying in {RETRY_DELAY} seconds... (Attempt {attempt + 1}/{MAX_RETRIES})") time.sleep(RETRY_DELAY) else: st.error(f"Failed to analyze the report after {MAX_RETRIES} attempts. Error: {str(e)}") return fallback_analysis(content, content_type) def generate_tts_audio(text, lang_code): # Generate TTS audio from the provided text and language code tts = gTTS(text=text, lang=lang_code) # Save the audio to a temporary file audio_path = "audio_output.mp3" tts.save(audio_path) return audio_path def audio_player(audio_path): # Display an audio player in Streamlit audio_file = open(audio_path, "rb") audio_bytes = audio_file.read() st.audio(audio_bytes, format="audio/mp3") def extract_text_from_pdf(pdf_file): # Create a PDF reader object pdf_reader = PyPDF2.PdfReader(pdf_file) # Extract text from each page text = "" for page_num in range(len(pdf_reader.pages)): page = pdf_reader.pages[page_num] text += page.extract_text() return text def main(): st.title("ReportEase AI") st.write("AI-driven Medical Report Analyzer with Multilingual Audio Feedback.") st.write("Upload a Medical report (Image or PDF) for analysis.") language = st.selectbox("Select language for analysis and audio feedback:", list(LANGUAGES.keys())) lang_code = LANGUAGES[language] file_type = st.radio("Select file type:", ("Image", "PDF")) if file_type == "Image": uploaded_file = st.file_uploader("Choose a medical report image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file: tmp_file.write(uploaded_file.getvalue()) tmp_file_path = tmp_file.name image = Image.open(tmp_file_path) st.image(image, caption="Uploaded Medical Report", use_column_width=True) if st.button("Analyze Image Report"): with st.spinner("Analyzing the medical report image..."): analysis = analyze_medical_report(image, "image", lang_code) st.subheader("Analysis Results:") st.write(analysis) # Generate audio of the analysis audio_path = generate_tts_audio(analysis, lang_code) st.write("Listen to the analysis:") audio_player(audio_path) os.unlink(tmp_file_path) else: # PDF uploaded_file = st.file_uploader("Choose a medical report PDF", type=["pdf"]) if uploaded_file is not None: st.write("PDF uploaded successfully") if st.button("Analyze PDF Report"): with st.spinner("Analyzing the medical report PDF..."): with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file: tmp_file.write(uploaded_file.getvalue()) tmp_file_path = tmp_file.name with open(tmp_file_path, 'rb') as pdf_file: pdf_text = extract_text_from_pdf(pdf_file) analysis = analyze_medical_report(pdf_text, "text", lang_code) st.subheader("Analysis Results:") st.write(analysis) # Generate audio of the analysis audio_path = generate_tts_audio(analysis, lang_code) st.write("Listen to the analysis:") audio_player(audio_path) os.unlink(tmp_file_path) # Footer with "Made by Shan" st.markdown("---") st.markdown("

😎 Made by Shan-Ul-Haq 😎

", unsafe_allow_html=True) if __name__ == "__main__": main()