Spaces:
Runtime error
Runtime error
File size: 3,218 Bytes
97d35d2 4b2632f 97d35d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import ai21
import os
ai21.api_key = os.getenv("AI21_API_KEY")
def text_completion(model, prompt, numResults, maxTokens, temperature, topKReturn, topP):
response = ai21.Completion.execute(
model=model,
prompt=prompt,
numResults=numResults,
maxTokens=maxTokens,
temperature=temperature,
topKReturn=topKReturn,
topP=topP,
presencePenalty={
"scale": 1,
"applyToNumbers": True,
"applyToPunctuations": True,
"applyToStopwords": True,
"applyToWhitespaces": True,
"applyToEmojis": True
},
countPenalty={
"scale": 1,
"applyToNumbers": True,
"applyToPunctuations": True,
"applyToStopwords": True,
"applyToWhitespaces": True,
"applyToEmojis": True
},
frequencyPenalty={
"scale": 1,
"applyToNumbers": True,
"applyToPunctuations": True,
"applyToStopwords": True,
"applyToWhitespaces": True,
"applyToEmojis": True
},
stopSequences=[]
)
return response.suggestions[0].text
def chat(model, messages, numResults, maxTokens, temperature, topKReturn, topP):
response = ai21.Chat.execute(
model=model,
messages=messages,
numResults=numResults,
maxTokens=maxTokens,
temperature=temperature,
topKReturn=topKReturn,
topP=topP,
presencePenalty={
"scale": 1,
"applyToNumbers": True,
"applyToPunctuations": True,
"applyToStopwords": True,
"applyToWhitespaces": True,
"applyToEmojis": True
},
countPenalty={
"scale": 1,
"applyToNumbers": True,
"applyToPunctuations": True,
"applyToStopwords": True,
"applyToWhitespaces": True,
"applyToEmojis": True
},
frequencyPenalty={
"scale": 1,
"applyToNumbers": True,
"applyToPunctuations": True,
"applyToStopwords": True,
"applyToWhitespaces": True,
"applyToEmojis": True
},
stopSequences=[]
)
return response.suggestions[0].text
def GEC(text):
response = ai21.GEC.execute(text=text)
l = len(response.corrections)
for i in range(l):
sug = response.corrections[i].suggestion
start = response.corrections[i].startIndex
end = response.corrections[i].endIndex
text = text.replace(
text[start:end],
sug
)
return text
def summarize(text):
response = ai21.Summarize.execute(source=text, sourceType="TEXT")
return response.summary
def improvements(text):
response = ai21.Improvements.execute(
text=text,
types=[
'fluency',
'vocabulary/specificity',
'vocabulary/variety',
'clarity/short-sentences',
'clarity/conciseness'
]
)
l = len(response.improvements)
for i in range(l):
sug = response.improvements[i].suggestions[0]
start = response.improvements[i].startIndex
end = response.improvements[i].endIndex
text = text.replace(
text[start:end],
sug
)
return text
def paraphrase(text):
response = ai21.Paraphrase.execute(text=text, style="general")
return response.suggestions[0].text
def contextual_answer(context, question):
response = ai21.Answer.execute(context=context, question=question)
return response.suggestions[0].text |