File size: 6,351 Bytes
8869ff1 b52c479 c201c90 8869ff1 b52c479 8869ff1 b52c479 8869ff1 b52c479 c201c90 b52c479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import streamlit as st
from langchain.llms import HuggingFaceHub
from llm import similarity
from file_manipulation import make_directory_if_not_exists
from models import return_models, return_text2text_generation_models, return_task_name, return_text_generation_models
class LLM_Langchain():
def __init__(self):
dummy_parent = "google"
self.models_count = return_text2text_generation_models(dummy_parent, True) + return_text_generation_models(dummy_parent, True)
st.warning("Warning: Some models may not work and some models may require GPU to run")
st.text(f"As of now there are {self.models_count} model available")
st.text("Made with Langchain, StreamLit, Hugging Face and π")
st.header('π¦π One stop for Open Source Models')
self.API_KEY = st.sidebar.text_input(
'API Key',
type='password',
help="Type in your HuggingFace API key to use this app")
self.task_name = st.sidebar.selectbox(
label = "Choose the task you want to perform",
options = return_task_name(),
help="Choose your open source LLM to get started"
)
if self.task_name is None:
model_parent_visibility = True
else:
model_parent_visibility = False
model_parent_options = return_models(self.task_name)
model_parent = st.sidebar.selectbox(
label = "Choose your Source",
options = model_parent_options,
help="Choose your source of models",
disabled=model_parent_visibility
)
if model_parent is None:
model_name_visibility = True
else:
model_name_visibility = False
if self.task_name == "text2text-generation":
options = return_text2text_generation_models(model_parent)
else:
options = return_text_generation_models(model_parent)
self.model_name = st.sidebar.selectbox(
label = "Choose your Models",
options = options,
help="Choose your open source LLM to get started",
disabled=model_name_visibility
)
self.temperature = st.sidebar.slider(
label="Temperature",
min_value=0.1,
max_value=1.0,
step=0.1,
value=0.9,
help="Set the temperature to get accurate results"
)
self.max_token_length = st.sidebar.slider(
label="Token Length",
min_value=32,
max_value=1024,
step=32,
value=1024,
help="Set the max tokens to get accurate results"
)
self.model_kwargs = {
"temperature": self.temperature,
"max_length": self.max_token_length
}
os.environ['HUGGINGFACEHUB_API_TOKEN'] = self.API_KEY
def generate_response(self, input_text):
llm = HuggingFaceHub(
repo_id = self.model_name,
model_kwargs = self.model_kwargs
)
return llm(input_text)
def radio_button(self):
options = ['FineTune', 'Inference']
selected_option = st.radio(
label="Choose your options",
options=options
)
return selected_option
def pdf_uploader(self):
if self.selected_option == "Inference":
self.uploader_visibility = True
else:
self.uploader_visibility = False
self.file_upload_status = st.file_uploader(
label="Upload PDF file",
disabled=self.uploader_visibility
)
make_directory_if_not_exists('assets/')
if self.file_upload_status is not None:
self.pdf_file_path = f"assets/{self.file_upload_status.name}"
with open(self.pdf_file_path, "wb") as f:
f.write(self.file_upload_status.getbuffer())
st.write("File Uploaded Successfully")
def form_data(self):
# with st.form('my_form'):
try:
if not self.API_KEY.startswith('hf_'):
st.warning('Please enter your API key!', icon='β ')
self.selected_option = self.radio_button()
self.pdf_uploader()
if self.selected_option == "FineTune":
if self.file_upload_status is None:
text_input_visibility = True
else:
text_input_visibility = False
else:
text_input_visibility = False
if "messages" not in st.session_state:
st.session_state.messages = []
st.write(f"You are using {self.model_name} model")
for message in st.session_state.messages:
with st.chat_message(message.get('role')):
st.write(message.get("content"))
text = st.chat_input(disabled=text_input_visibility)
if text:
st.session_state.messages.append(
{
"role":"user",
"content": text
}
)
with st.chat_message("user"):
st.write(text)
if text.lower() == "clear":
del st.session_state.messages
return
if self.selected_option == 'FineTune':
result = similarity(self.pdf_file_path, self.model_name, self.model_kwargs, text)
else:
result = self.generate_response(text)
st.session_state.messages.append(
{
"role": "assistant",
"content": result
}
)
with st.chat_message('assistant'):
st.markdown(result)
except Exception as e:
st.error(e, icon="π¨")
model = LLM_Langchain()
model.form_data() |