Spaces:
Runtime error
Runtime error
File size: 13,363 Bytes
588ce8d 70b8d29 588ce8d 70b8d29 afeb582 588ce8d afeb582 588ce8d afeb582 588ce8d 3e8b98f 588ce8d afeb582 588ce8d 7b5103c 588ce8d 3e8b98f 588ce8d 7b5103c 588ce8d 690e199 588ce8d 70b8d29 588ce8d 70b8d29 588ce8d 2098c98 588ce8d 70b8d29 588ce8d 2098c98 588ce8d 2098c98 588ce8d 2098c98 588ce8d 2098c98 588ce8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
def mask_to_boxes(mask):
""" Convert a boolean (Height x Width) mask into a (N x 4) array of NON-OVERLAPPING bounding boxes
surrounding "islands of truth" in the mask. Boxes indicate the (Left, Top, Right, Bottom) bounds
of each island, with Right and Bottom being NON-INCLUSIVE (ie they point to the indices AFTER the island).
This algorithm (Downright Boxing) does not necessarily put separate connected components into
separate boxes.
You can "cut out" the island-masks with
boxes = mask_to_boxes(mask)
island_masks = [mask[t:b, l:r] for l, t, r, b in boxes]
"""
max_ix = max(s+1 for s in mask.shape) # Use this to represent background
# These arrays will be used to carry the "box start" indices down and to the right.
x_ixs = np.full(mask.shape, fill_value=max_ix)
y_ixs = np.full(mask.shape, fill_value=max_ix)
# Propagate the earliest x-index in each segment to the bottom-right corner of the segment
for i in range(mask.shape[0]):
x_fill_ix = max_ix
for j in range(mask.shape[1]):
above_cell_ix = x_ixs[i-1, j] if i>0 else max_ix
still_active = mask[i, j] or ((x_fill_ix != max_ix) and (above_cell_ix != max_ix))
x_fill_ix = min(x_fill_ix, j, above_cell_ix) if still_active else max_ix
x_ixs[i, j] = x_fill_ix
# Propagate the earliest y-index in each segment to the bottom-right corner of the segment
for j in range(mask.shape[1]):
y_fill_ix = max_ix
for i in range(mask.shape[0]):
left_cell_ix = y_ixs[i, j-1] if j>0 else max_ix
still_active = mask[i, j] or ((y_fill_ix != max_ix) and (left_cell_ix != max_ix))
y_fill_ix = min(y_fill_ix, i, left_cell_ix) if still_active else max_ix
y_ixs[i, j] = y_fill_ix
# Find the bottom-right corners of each segment
new_xstops = np.diff((x_ixs != max_ix).astype(np.int32), axis=1, append=False)==-1
new_ystops = np.diff((y_ixs != max_ix).astype(np.int32), axis=0, append=False)==-1
corner_mask = new_xstops & new_ystops
y_stops, x_stops = np.array(np.nonzero(corner_mask))
# Extract the boxes, getting the top-right corners from the index arrays
x_starts = x_ixs[y_stops, x_stops]
y_starts = y_ixs[y_stops, x_stops]
ltrb_boxes = np.hstack([x_starts[:, None], y_starts[:, None], x_stops[:, None]+1, y_stops[:, None]+1])
return ltrb_boxes
def get_top_predictions(prediction = None, threshold = 0.8):
if prediction is None:
return None, None
else:
sorted_scores_ids = prediction.pred_instances.scores.argsort()[::-1]
sorted_scores = prediction.pred_instances.scores[sorted_scores_ids]
sorted_predictions = prediction.pred_instances.labels[sorted_scores_ids]
return {'pred_above_thresh': sorted_predictions[sorted_scores > threshold],
'pred_above_thresh_id': sorted_scores_ids[sorted_scores > threshold],
'pred_above_thresh_scores': sorted_scores[sorted_scores > threshold],
'pred_above_thresh_bboxes': prediction.pred_instances['bboxes'][sorted_scores_ids][sorted_scores > threshold]}
def add_class_labels(top_pred = {}, class_labels = None):
if class_labels == None:
print('No class labels provided, returning original dictionary')
return top_pred
else:
top_pred['pred_above_thresh_labels'] = [class_labels[x].lower() for x in top_pred['pred_above_thresh']]
#print(top_pred['pred_above_thresh_labels'])
#print(top_pred['pred_above_thresh_scores'])
top_pred['any_detection'] = len(top_pred['pred_above_thresh_labels']) > 0
if top_pred['any_detection']:
# Get shark / human / unknown vectors
top_pred['is_shark'] = np.array([1 if 'shark' in x and 'shadow' not in x else 0 for x in top_pred['pred_above_thresh_labels']])
top_pred['is_human'] = np.array([1 if 'person' in x else 1 if 'surfer' in x else 0 for x in top_pred['pred_above_thresh_labels']])
top_pred['is_unknown'] = np.array([1 if 'unidentifiable' in x else 0 for x in top_pred['pred_above_thresh_labels']])
# Get shark / human / unknown numbers of detections
top_pred['shark_n'] = np.sum(top_pred['is_shark'])
top_pred['human_n'] = np.sum(top_pred['is_human'])
top_pred['unknown_n'] = np.sum(top_pred['is_unknown'])
else:
# Get shark / human / unknown vectors
top_pred['is_shark'] = None
top_pred['is_human'] = None
top_pred['is_unknown'] = None
# Get shark / human / unknown numbers of detections
top_pred['shark_n'] = 0
top_pred['human_n'] = 0
top_pred['unknown_n'] = 0
return top_pred
def add_class_sizes(top_pred = {}, class_sizes = None):
size_list = []
shark_size_list = []
if top_pred['any_detection']:
for tmp_pred in top_pred['pred_above_thresh_labels']:
tmp_class_sizes = class_sizes[tmp_pred.lower()]
if tmp_class_sizes == None:
size_list.append(None)
continue
else:
size_list.append(tmp_class_sizes['feet'])
if 'shark' in tmp_pred.lower() and 'shadow' not in tmp_pred.lower() :
shark_size_list.append(np.mean(tmp_class_sizes['feet']))
top_pred['pred_above_thresh_sizes'] = size_list
if top_pred['shark_n'] > 0 and len(shark_size_list) > 0:
top_pred['biggest_shark_size'] = np.max(shark_size_list)
else:
top_pred['biggest_shark_size'] = None
else:
top_pred['pred_above_thresh_sizes'] = None
top_pred['biggest_shark_size'] = None
return top_pred
def add_class_weights(top_pred = {}, class_weights = None):
weight_list = []
shark_weight_list = []
if top_pred['any_detection']:
for tmp_pred in top_pred['pred_above_thresh_labels']:
tmp_class_weights = class_weights[tmp_pred.lower()]
if tmp_class_weights == None:
weight_list.append(None)
continue
else:
weight_list.append(tmp_class_weights['pounds'])
if 'shark' in tmp_pred.lower():
shark_weight_list.append(np.mean(tmp_class_weights['pounds']))
top_pred['pred_above_thresh_weights'] = weight_list
if top_pred['shark_n'] > 0 and len(shark_weight_list) > 0:
top_pred['biggest_shark_weight'] = np.max(shark_weight_list)
else:
top_pred['biggest_shark_weight'] = None
else:
top_pred['pred_above_thresh_weights'] = None
top_pred['biggest_shark_weight'] = None
return top_pred
# Sizes
def get_min_distance_shark_person(top_pred, class_sizes = None, dangerous_distance = 100):
min_dist = 99999
dist_calculated = False
# Calculate distance for every pairing of human and shark
# and accumulate the min distance
for i, tmp_shark in enumerate(top_pred['is_shark']):
for j, tmp_person in enumerate(top_pred['is_human']):
if tmp_shark == 1 and tmp_person == 1:
dist_calculated = True
#print(top_pred['pred_above_thresh_bboxes'][i])
#print(top_pred['pred_above_thresh_bboxes'][j])
tmp_dist_feed = _calculate_dist_estimate(top_pred['pred_above_thresh_bboxes'][i],
top_pred['pred_above_thresh_bboxes'][j],
[top_pred['pred_above_thresh_labels'][i], top_pred['pred_above_thresh_labels'][j]],
class_sizes,
measurement = 'feet')
#print(tmp_dist_feed)
min_dist = min(min_dist, tmp_dist_feed)
else:
pass
return {'min_dist': str(round(min_dist,1)) + ' feet' if dist_calculated else '',
'any_dist_calculated': dist_calculated,
'dangerous_dist': min_dist < dangerous_distance}
def _calculate_dist_estimate(bbox1, bbox2, labels, class_sizes = None, measurement = 'feet'):
if class_sizes[labels[0]] == None or class_sizes[labels[1]] == None:
return 9999
class_feet_size_mean = np.array([class_sizes[labels[0]][measurement][0],
class_sizes[labels[1]][measurement][0]]).mean()
box_pixel_size_mean = np.array([np.linalg.norm(bbox1[[0, 1]] - bbox1[[2, 3]]),
np.linalg.norm(bbox2[[0, 1]] - bbox2[[2, 3]])]).mean()
# Calculate the max size of the two boxes
box_center_1 = np.array([(bbox1[2] - bbox1[0])/2 + bbox1[0],
(bbox1[3] - bbox1[1])/2 + bbox1[1]])
box_center_2 = np.array([(bbox2[2] - bbox2[0])/2 + bbox2[0],
(bbox2[3] - bbox2[1])/2 + bbox2[1]])
# Return ratio distance
return np.linalg.norm(box_center_1 - box_center_2) / box_pixel_size_mean * class_feet_size_mean
# bboxes info!
# 1 x1 (left, lower pixel number)
# 2 y1 (top , lower pixel number)
# 3 x2 (right, higher pixel number)
# 4 y2 (bottom, higher pixel number)
def process_results_for_plot(predictions = None, threshold = 0.5, classes = None,
class_sizes = None, dangerous_distance = 100):
# Attempt to create bounding boxes for humans(surfers) detected.
# mask = predictions.pred_panoptic_seg.sem_seg[0]
# print(np.unique(mask))
# mask = mask >2000
# bboxes = mask_to_boxes(mask)
# bboxes = [box for box in bboxes if box[2]*box[3]>100]
top_pred = get_top_predictions(predictions, threshold = threshold)
top_pred = add_class_labels(top_pred, class_labels = classes)
top_pred = add_class_sizes(top_pred, class_sizes = class_sizes)
top_pred = add_class_weights(top_pred, class_weights = class_sizes)
if len(top_pred['pred_above_thresh']) > 0:
min_dist = get_min_distance_shark_person(top_pred, class_sizes = class_sizes)
else:
min_dist = {'any_dist_calculated': False,
'min_dist': '',
'dangerous_dist': False}
return {'min_dist_str': min_dist['min_dist'],
'shark_suspected': top_pred['shark_n'] > 0,
'human_suspected': top_pred['human_n'] > 0,
'shark_n': top_pred['shark_n'],
#'human_n': max(top_pred['human_n'],len(bboxes)-top_pred['shark_n']),
'human_n': top_pred['human_n'],
'human_and_shark': (top_pred['shark_n'] > 0) and (top_pred['human_n'] > 0),
'dangerous_dist': min_dist['dangerous_dist'],
'dist_calculated': min_dist['any_dist_calculated'],
'biggest_shark_size': '' if top_pred['biggest_shark_size'] == None else str(round(top_pred['biggest_shark_size'],1)) + ' feet',
'biggest_shark_weight': '' if top_pred['biggest_shark_weight'] == None else str(round(top_pred['biggest_shark_weight'],1)) + ' pounds',
}
def prediction_dashboard(top_pred = None):
# Bullet points:
if top_pred['shark_sighted'] > 0:
shark_suspected = 'Shark Sighted !'
elif top_pred['shark_suspected'] > 0:
shark_suspected = 'Shark Suspected !'
else:
shark_suspected = 'No Sharks ...'
if top_pred['human_sighted'] > 0:
human_suspected = 'Human Sighted !'
elif top_pred['human_suspected'] > 0:
human_suspected = 'Human Suspected !'
else:
human_suspected = 'No Humans ...'
shark_size_estimate = 'Biggest shark size: ' + str(top_pred['biggest_shark_size'])
shark_weight_estimate = 'Biggest shark weight: ' + str(top_pred['biggest_shark_weight'])
danger_level = 'Danger Level: '
danger_level += 'High' if top_pred['dangerous_dist_confirmed'] else 'Low'
danger_color = 'orangered' if top_pred['dangerous_dist_confirmed'] else 'yellowgreen'
# Create a list of strings to plot
strings = [shark_suspected, human_suspected, shark_size_estimate, shark_weight_estimate, danger_level]
# Create a figure and axis
fig, ax = plt.subplots()
fig.set_facecolor((35/255,40/255,54/255))
# Hide axes
ax.axis('off')
# Position for starting to place text, starting from top
y_pos = 0.7
# Iterate through list and place each item as text on the plot
for s in strings:
if 'danger' in s.lower():
ax.text(0.05, y_pos, s, transform=ax.transAxes, fontsize=16, color=danger_color)
else:
ax.text(0.05, y_pos, s, transform=ax.transAxes, fontsize=16, color=(0, 204/255, 153/255))
y_pos -= 0.1 # move down for next item
# plt.tight_layout()
# If we haven't already shown or saved the plot, then we need to
# draw the figure first...
fig.canvas.draw();
# Now we can save it to a numpy array.
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
#plt.savefig('tmp.png', format='png')
return data #plt.show() |